首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli strain NG7C was shown to bind iodine-labeled human type IV collagen (Cn). The binding was rapid and saturable. The number of binding sites was estimated to be 1.5×104 sites/cell and the dissociation constant 85 nM. The binding was inhibited by unlabeled type I, type IV, and type X Cn, gelatin and, at high doses by vitronectin and fibrinogen. Heat treatment of bacteria abolished the binding. A cell sonicate of strain NG7C inhibited the binding. Heat or protease treatment of the sonicate reduced its inhibitory activity by more than 50% Cell surface extracts of strain NG7C likewise inhibited Cn binding. Cells ofE. coli NG7C also bound to type IV Cn immobilized on microtiter plates. The Cn binding appears to be mediated by cell surface protein(s). Type IV Cn binding toE. coli NG7C differed from the earlier reported Cn binding mechanisms toE. coli, i.e., binding of soluble type II Cn, and from binding of immobilized type V Cn by enterobacteria.E. coli strains can thus produce different surface proteins which mediate binding to collagens. Expression of Cn binding byE. coli may enhance colonization of subepithelial tissues.  相似文献   

2.
The fimbrial and afimbrial adhesins of the Dr family mediate the adherence of uropathogenic and diarrhoea-associated Escherichia coli to decay-accelerating factor (DAF) present on erythrocytes and other cell types. The Dr haemagglutinin binds type IV collagen and, unlike other members of the Dr family, mediates an adherence inhibited in the presence of chloramphenicol. We examined the ability of other members of the Dr family—AFAI, AFAIII, and F1845—to bind to type IV collagen, and demonstrated that the collagen-binding phenotype was unique to the Dr haemagglutinin. We employed site-directed mutagenesis to demonstrate the requirement of a negatively charged amino-acid at position 54 of the Dr haemagglutinin subunit for chloramphenicol sensitivity of binding. Mutations at position 32, 40, 54, 90, and 113 differently affected type IV collagen binding and chloramphenicol sensitivity of binding, while retaining DAF-binding capability. These results suggest the existence of a conformational receptor-binding domain in the major structural subunit of Dr family adhesins and demonstrate that chloramphenicol sensitivity of binding and adherence to type IV collagen were independent and separable phenotypes. Finally, we showed that the two conserved cysteine residues of Dr family structural subunits form a disulphide bond and that mutations of these residues abolish haemagglutination and binding to type IV collagen.  相似文献   

3.
Abstract Binding characteristics of the purified Escherichia coli O75X adhesin in frozen sections of human kidney were determined, using antibodies raised against the purified antigen and rhodamine-conjugated second antibodies. To identify the adhesin-binding nephron domains, the same tissue sections were double stained with fluorescein isothiocynate-conjugated nephron site-specific lectins. The results revealed that, at the tubular pole, the O75X adhesin bound selectively to the basement membrane of proximal and distal tubules and, with a slightly lower efficiency, of collecting ducts. In the glomerulus, the O75X adhesin bound only to the parietal epithelial cells (Bowman's capsule). The purified O75X adhesin bound also to exfoliated epithelial cells in human urine. Our results suggest that the O75X adhesin may contribute to the uropathogenicity of E. coli by binding the bacteria to tissue structures in the human urinary tract.  相似文献   

4.
We have examined the interactions between the small dermatan sulfate proteoglycan decorin and collagen types I-VI using solid phase binding assays. The results of these studies showed that 125I-decorin bound most efficiently to collagen type VI in a time- and concentration-dependent manner. Furthermore, this interaction was specific and of moderately high affinity (Kd approximately 3 x 10(-7) M). Binding of decorin to collagen type VI appears to involve the decorin core protein rather than the glycosaminoglycan side chains, since the isolated core protein as well as a recombinant fusion protein containing a major segment (65%) of the human decorin core protein inhibited binding of 125I-decorin to collagen type VI. Other related proteoglycans and their respective core proteins also inhibited the binding of 125I-decorin to collagen type VI, whereas unrelated proteins and isolated glycosaminoglycan chains were without effect. In addition to decorin, collagen type II was also shown to bind to immobilized collagen type VI. Both interactions were effectively inhibited by preincubation of the immobilized collagen VI with decorin or collagen type II. These results suggested that the collagen type VI molecule has binding sites for collagen type II and decorin which are located in close proximity on the collagen type VI molecule. Possible functional roles of these interactions are discussed.  相似文献   

5.
Binding of P fimbriae of uropathogenic Escherichia coli to purified human fibronectin and human placental type IV collagen was studied. In an enzyme immunoassay, purified P fimbriae bound strongly to immobilized intact fibronectin and to the aminoterminal 30-kDa fragment and the 120-140-kDa carboxyterminal fragments of fibronectin. Binding to the gelatin-binding 40-kDa fragment of fibronectin was considerably weaker. No binding to immobilized type IV collagen was seen. The interaction between P fimbriae and immobilized fibronectin was not inhibited by alpha-D-Gal-(1-4)-beta-D-Gal-1-O-Me, a receptor analog of P fimbriae. Moreover, a mutated P fimbria lacking the lectin activity behaved similarly in the adherence assays. Recombinant strains expressing the corresponding cloned fimbriae genes bound to immobilized fibronectin, but no binding to soluble 125I-labelled fibronectin was found. The results suggest that P fimbriae interact with immobilized fibronectin and that the binding mechanism does not involve the lectin activity of the fimbriae.  相似文献   

6.
Binding of human monomeric type I collagen to platelets   总被引:1,自引:0,他引:1  
Interaction of platelets with subendothelial collagen is important in primary hemostasis and thrombosis. Although activation of platelets by collagen polymers has been widely investigated, only insufficient data are available concerning the binding of genetically distinct collagen types in their triple helical (monomeric) form to platelets. We report on the binding of 125I-labeled human type I collagen to platelets. The binding assay was performed at 20 degrees C in the presence of arginine in order to prevent polymerization of the collagen monomers. The binding of monomeric 125I-labeled human type I collagen is dose- and time-dependent, saturable and specific, since it is competitively inhibited by unlabeled type I collagen, but not by unlabeled human type V collagen. Scatchard analysis reveals a class of specific high affinity binding sites with a Kd of 2.5 X 10(-8) M. These results suggest that platelets interact with type I collagen through specific binding sites, and that there are various different binding sites on the platelet membrane for the genetically distinct collagen types.  相似文献   

7.
A Collagen-Binding S-Layer Protein in Lactobacillus crispatus   总被引:7,自引:0,他引:7       下载免费PDF全文
Two S-layer-expressing strains, Lactobacillus crispatus JCM 5810 and Lactobacillus acidophilus JCM 1132, were assessed for adherence to proteins of the mammalian extracellular matrix. L. crispatus JCM 5810 adhered efficiently to immobilized type IV and I collagens, laminin, and, with a lower affinity, to type V collagen and fibronectin. Strain JCM 1132 did not exhibit detectable adhesiveness. Within the fibronectin molecule, JCM 5810 recognized the 120-kDa cell-binding fragment of the protein, while no bacterial adhesion to the amino-terminal 30-kDa or the gelatin-binding 40-kDa fragment was detected. JCM 5810 but not JCM 1132 also bound (sup125)I-labelled soluble type IV collagen, and this binding was efficiently inhibited by unlabelled type IV and I collagens and less efficiently by type V collagen, but not by laminin or fibronectin. L. crispatus JCM 5810 but not L. acidophilus JCM 1132 also adhered to Matrigel, a reconstituted basement membrane preparation from mouse sarcoma cells, as well as to the extracellular matrix prepared from human Intestine 407 cells. S-layers from both strains were extracted with 2 M guanidine hydrochloride, separated by electrophoresis, and transferred to nitrocellulose sheets. The S-layer protein from JCM 5810 bound (sup125)I-labelled type IV collagen, whereas no binding was seen with the S-layer protein from JCM 1132. Binding of (sup125)I-collagen IV to the JCM 5810 S-layer protein was effectively inhibited by unlabelled type I and IV collagens but not by type V collagen, laminin, or fibronectin. It was concluded that L. crispatus JCM 5810 has the capacity to adhere to human subintestinal extracellular matrix via a collagen-binding S-layer.  相似文献   

8.
Staphylococcus epidermidis is the leading cause of device-related infections. These infections require an initial colonization step in which S. epidermidis adheres to the implanted material. This process is usually mediated by specific bacterial surface proteins and host factors coating the foreign device. Some of these surface proteins belong to the serine-aspartate repeat (Sdr) family, which includes adhesins from Staphyloccus aureus and S. epidermidis. Using a heterologous expression system in Lactococcus lactis to overcome possible staphylococcal adherence redundancy we observed that one of these Sdr proteins, SdrF, mediates binding to type I collagen when present on the lactococcal cell surface. We used lactococcal recombinant strains, a protein-protein interaction assay and Western ligand blot analysis to demonstrate that this process occurs via the B domain of SdrF and both the alpha1 and alpha2 chains of type I collagen. It was also found that a single B domain repeat of S. epidermidis 9491 retains the capacity to bind to type I collagen. We demonstrated that the putative ligand binding N-terminal A domain does not bind to collagen which suggests that SdrF might be a multiligand adhesin. Antibodies directed against the B domain significantly reduce in vitro adherence of S. epidermidis to immobilized collagen.  相似文献   

9.
Conclusions The E. coli adhesions show a remarkable tissue tropism in the human urinary tract. This obviously relates to the known compartmentation of glycoconjugates in the kidney. To function as a virulence factor in human urinary tract infections, an adhesin must evidently recognize such receptors at uroepithelia that are not excreted in soluble form in urine. This prerequisite is filled by P fimbriae but not by type-1 or S fimbriae. Most of the tissue interactions of E.coli adhesins involve binding to carbohydrate receptors, whereas the binding of the 075X adhesin to type IV collagen appears to rely on protein-protein interactions. Binding of P fimbriae to immobilized fibronectin is independent of the lectin activity of the fimbriae and suggests of an additional function for the fimbrillin in mediating interaction with matrix and basement membrane proteins. Such interaction might be useful after colonization and disruption of epithelial surfaces, when the lectin activity of the fimbriae is not any more important.  相似文献   

10.
Interaction of vitronectin with collagen   总被引:12,自引:0,他引:12  
Purified human plasma vitronectin was demonstrated to bind to type I collagen immobilized on plastic as measured by enzyme-linked immunosorbent assay and by binding of 125I-radiolabeled vitronectin to a collagen-coated plastic surface. Vitronectin did not bind to immobilized laminin, fibronectin, or albumin in these assays. Vitronectin showed similar interaction with all types of collagen (I, II, III, IV, V, and VI) tested. Collagen unfolded by heat treatment bound vitronectin less efficiently than native collagen. Vitronectin-coated colloidal gold particles bound to type I collagen fibrils as shown by electron microscopy. Salt concentrations higher than physiological interfered with the binding of vitronectin to collagen, suggesting an ionic interaction between the two proteins. Binding studies conducted in the presence of plasma showed that purified vitronectin added to plasma bound to immobilized collagen, whereas the endogenous plasma vitronectin bound to collagen less well. Although fibronectin did not interfere with the binding of vitronectin to native collagen, vitronectin inhibited the binding of fibronectin to collagen. These results show that vitronectin has a collagen-binding site(s) which, unlike that of fibronectin, preferentially recognizes triple-helical collagen and that the binding between vitronectin and collagen has characteristics compatible with the occurrence of such an interaction in vivo.  相似文献   

11.
Binding of thrombospondin (TSP) to types I-V collagen was examined by direct binding assays using 125I-TSP and by visualization of rotary-shadowed intermolecular complexes in the electron microscope. The binding of TSP was highest to type V collagen in the absence of Ca, while lower but significant levels of binding were observed to all other collagen types in the presence or absence of Ca. Unlike intact TSP, the trimeric collagen-binding domain of TSP composed of 70-kD chains showed no Ca dependence in its binding to type V collagen. Further evidence for binding of TSP to types I and III collagen was obtained by competition studies in which these soluble collagens effectively inhibited binding of 125I-TSP to immobilized type V collagen. The binding of TSP to type V collagen was inhibited by heparin and fucoidin, both high-affinity ligands of TSP's heparin-binding domain. mAb A6.1, which binds to the 70-kD domain of TSP, is also the best of a panel of anti-TSP mAbs at inhibiting the TSP-collagen interaction. Electron microscopy of rotary-shadowed replicas of TSP-collagen complexes revealed that all five types of collagen examined had a binding site for TSP at one end of the pepsinized, triple helical molecule. The specificity of this site was tested by examining the ability of BSA to form a complex with the end of the pepsinized collagens. Rotary-shadowed replicas revealed a low frequency of apparent BSA-collagen complexes, and histograms of these data showed no evidence for the preferential association of BSA with the end of the collagen molecules. In addition to the specific end site, type V collagen had an internal binding site for TSP located about two-thirds of the distance along the length of the collagen molecule from the end site. The internal binding site for TSP on type V collagen is apparently the site responsible for the higher affinity binding of TSP to that protein observed in direct binding assays. The trimeric 70-kD collagen-binding domain of TSP bound to the same sites on the collagens as did intact TSP.  相似文献   

12.
A cell-binding peptide (Mr = 85,000) which lacks the gelatin- and heparin-binding domains, was purified from trypsin-digested fibronectin. Preincubation of rat hepatocytes in suspension with the peptide, inhibited initial attachment of the cells to immobilized fibronectin while attachment to immobilized laminin and collagen was unaffected. 125I-labeled 85-kDa peptide bound to the cells in suspension at 4 degrees C in a time-dependent, saturable, and partially reversible reaction. Scatchard analysis of the binding data indicated a single class of receptors with a Kd of 1.7 X 10(-8) M. The number of binding-sites was approximately 2.8 X 10(5)/cell. Unlabeled 85-kDa peptide inhibited the binding of 125I-labeled 85-kDa peptide 30-fold more effectively than intact fibronectin. These results provide direct evidence for the presence of a domain in the fibronectin molecule which has or may acquire a high affinity for receptors involved in adhesion of hepatocytes to immobilized fibronectin.  相似文献   

13.
《The Journal of cell biology》1986,103(6):2467-2473
Type IV collagen incubated at elevated temperatures in physiologic buffers self-associates (a) via its carboxy-terminal (NC1) domain, (b) via its amino-terminal (7S) domain, and (c) laterally; and it forms a network. When examined with the technique of rotary shadowing, isolated domain NC1 was found to bind along the length of type IV collagen to four distinct sites located at intervals of approximately 100 nm each. The same 100-nm distance was observed in domain NC1 of intact type IV collagen bound along the length of the collagen molecules during initial steps of network formation and in complete networks. The presence of anti-NC1 Fab fragments in type IV collagen solutions inhibited lateral association and network formation in rotary shadow images. During the process of self-association type IV collagen develops turbidity; addition of isolated domain NC1 inhibited the development of turbidity in a concentration-dependent manner. These findings indicate that domain NC1 of type IV collagen plays an important role in the process of self-association and suggest that alterations in the structure of NC1 may be partially responsible for impaired functions of basement membranes in certain pathological conditions.  相似文献   

14.
The location of the epitopes for monoclonal antibodies against chicken type IV and type V collagens were directly determined in the electron microscope after rotary shadowing of antibody/collagen mixtures. Three monoclonal antibodies against type IV collagen were examined, each one of which was previously demonstrated to be specific for only one of the three pepsin-resistant fragments of the molecule. The three native fragments were designated (F1)2F2, F3, and 7S, and the antibodies that specifically recognize each fragment were called, respectively, IA8 , IIB12 , and ID2 . By electron microscopy, monoclonal antibody IA8 recognized an epitope located in the center of fragment (F1)2F2 and in tetramers of type IV collagen at a distance of 288 nm from the 7S domain, the region of overlap of four type IV molecules. Monoclonal antibody IIB12 , in contrast, recognized an epitope located only 73 nm from the 7S domain. This result therefore provides direct visual evidence that the F3 fragment is located closest to the 7S domain and the order of the fragments must be 7S-F3-(F1)2F2. The epitope for antibody ID2 was located in the overlap region of the 7S domain, and often several antibody molecules were observed to binding to a single 7S domain. The high frequency with which antibody molecules were observed to bind to fragments of type IV collagen suggests that there is a single population of type IV molecules of chain organization [alpha 1(IV)]2 alpha 2(IV), and that four identical molecules must form a tetramer that is joined in an antiparallel manner at the 7S domain. The monoclonal antibodies against type V collagen, called AB12 and DH2 , were both found to recognize epitopes close to one another, the epitopes being located 45-48 nm from one end of the type V collagen molecule. The significance of this result still remains uncertain, but suggests that this site is probably highly immunoreactive. It may also be related to the specific cleavage site of type V collagen by selected metalloproteinases and by alpha-thrombin. This cleavage site is also known to be located close to one end of the type V molecule.  相似文献   

15.
Interactions between type IV collagen and heparin were examined under equilibrium conditions with rotary shadowing, solid-phase binding assays, and affinity chromatography. With the technique of rotary shadowing and electron microscopy, heparin appeared as thin, short strands and bound to the following three sites: the NC1 domain, and in the helix, at 100 and 300 nm from the NC1 domain. By solid-phase binding assays the binding of [3H]heparin in solution to type IV collagen immobilized on a solid surface was found to be specific, since it was saturable and could be displaced by an excess of unlabeled heparin. Scatchard analysis indicated three classes of binding sites for heparin-type IV collagen interactions with dissociation constants of 3, 30, and 100 nM, respectively. Furthermore, by the solid-phase binding assays, the binding of tritiated heparin could be competed almost to the same extent by unlabeled heparin and chondroitin sulfate side chains. This finding indicates that chondroitin sulfate should also bind to type IV collagen. By affinity chromatography, [3H]heparin bound to a type IV collagen affinity column and was eluted with a linear salt gradient, with a profile exhibiting three distinct peaks at 0.18, 0.22, and 0.24 M KCl, respectively. This suggested that heparin-type IV collagen binding was of an electrostatic nature. Finally, the effect of the binding of heparin to type IV collagen on the process of self-assembly of this basement membrane glycoprotein was studied by turbidimetry and rotary shadowing. In turbidity experiments, the presence of heparin, even in small concentrations, drastically reduced maximal aggregation of type IV collagen which was prewarmed to 37 degrees C. By using the morphological approach of rotary shadowing, lateral associations and network formation by prewarmed type IV collagen were inhibited in the presence of heparin. Thus, the binding of heparin resulted in hindrance of assembly of type IV collagen, a process previously described for interactions between various glycosaminoglycans and interstitial collagens. Such regulation may influence the assembly of basement membranes and possibly modify functions. Furthermore, qualitative and quantitative changes of proteoglycans which occur in certain pathological conditions, such as diabetes mellitus, may alter molecular assembly and possibly permeability functions of several basement membranes.  相似文献   

16.
Binding of vitronectin and plasminogen to Helicobacter pylori   总被引:2,自引:0,他引:2  
Abstract We have studied how some extracellular matrix proteins, fibronectin, fibrinogen, collagen type I and type IV, plasminogen and vitronectin bind to Helicobacter pylori . Radiolabelled vitronectin and plasminogen bound to the haemagglutinating H. pylori strain 17874 at a high level (53% and 32%, respectively), type IV collagen showed an intermediate level of binding (16%), while binding by 125I-labelled fibrinogen, fibronectin and collagen type I remained at a low level (5–7%). Both 125I-vitronectin and plasminogen showed a dose-dependent binding to cells of H. pylori 17874. Plasminogen binding by this strain was specific since the binding was inhibited by nonlabelled plasminogen, but not by highly glycosylated glycoproteins such as fetuin and orosomucoid or by a variety of monosaccharides. We have previously shown that 125I-vitronectin shows a specific and saturable binding to H. pylori 17874, and that sialic acid-rich glycoproteins such as fetuin and orosomucoid drastically reduced binding. We now report that a simultaneous incubation of 125I-vitronectin and 125I-plasminogen with cells of H. pylori 17874 showed a total binding approximately similar to the level of binding when either 125I-plasminogen, or 125I-vitronectin only were incubated with the bacterial cells. Nonlabelled vitronectin inhibited the binding of 125I-plasminogen by H. pylori , but nonlabelled plasminogen had no effect on the binding of 125I-vitronectin. Our findings suggest that there are different but probably closely localized binding sites for vitronectin and plasminogen on H. pylori 17874.  相似文献   

17.
125I-fibronectin and 125I-collagen (type II) binding was detected in Escherichia coli strains isolated from chickens and poults. High fibronectin binding-strains also bind the 29 kD aminoterminal fragment of fibronectin. Binding properties in strain CK28 were partially characterized. The highest binding of 125I-fibronectin and 125I-collagen for strain CK28 was obtained with bacteria grown at 33 degrees C. Binding of 125I-fibronectin, its 125I-29 kD fragment, and 125I-collagen, was very rapid, reaching a maximum in 5 min. Binding of 125I-fibronectin and 125I-collagen was considerably inhibited by preincubation of bacteria with unlabelled fibronectin and unlabelled type I collagen respectively, but not inhibited with human immunoglobulin G or bovine serum albumin. Inhibition experiments showed that the reversibility of 125I-fibronectin binding was estimated at approximately 50%, while reversibility for 125I-collagen binding was higher than 90%. Receptors for fibronectin, its 29 kD fragment, and collagen were released from the bacterial surface by treatment at different temperatures, and surface material released at 100 degrees C inhibited binding. There was cross-inhibition for both fibronectin and collagen binding when unlabelled fibronectin and unlabelled collagen were used as inhibitors, suggesting that binding receptors for both proteins may be closely located.  相似文献   

18.
Shape and assembly of type IV procollagen obtained from cell culture.   总被引:13,自引:3,他引:10       下载免费PDF全文
Type IV procollagen was isolated from the culture medium of the teratocarcinoma cell line PYS-2 by affinity chromatography on heparin-Sepharose. Immunological studies showed that type IV procollagen is composed of pro-alpha 1(IV) and pro-alpha 2(IV) chains and contains two potential cross-linking sites which are located in the short triple-helical 7S domain and the globular domain NC1 . The 7S domain was also identified as the heparin binding site. Rotary shadowing visualized type IV procollagen as a single triple-helical rod (length 388 nm) with a globule at one end. Some of the procollagen in the medium, however, had formed aggregates by alignment of 2-4 molecules along their 7S domains. After deposition in the cell matrix, non-reducible cross-links between the 7S domains are formed while the globules of two procollagen molecules connect to each other. The latter may require a slight proteolytic processing of the globular domains NC1 . The shape of type IV procollagen and the initial steps in its assembly are compatible with a recently proposed network of type IV collagen molecules in basement membranes. Since both type IV collagen and laminin bind to heparin, the formation of higher ordered structures by interaction of both proteins with heparan-sulfate proteoglycan may occur in situ.  相似文献   

19.
The opportunistic human pathogen Staphylococcus epidermidis is the major cause of nosocomial biomaterial infections. S. epidermidis has the ability to attach to indwelling materials coated with extracellular matrix proteins such as fibrinogen, fibronectin, vitronectin, and collagen. To identify the proteins necessary for S. epidermidis attachment to collagen, we screened an expression library using digoxigenin-labeled collagen as well as two monoclonal antibodies generated against the Staphylococcus aureus collagen-adhesin, Cna, as probes. These monoclonal antibodies recognize collagen binding epitopes on the surface of S. aureus and S. epidermidis cells. Using this approach, we identified GehD, the extracellular lipase originally found in S. epidermidis 9, as a collagen-binding protein. Despite the monoclonal antibody cross-reactivity, the GehD amino acid sequence and predicted structure are radically different from those of Cna. The mature GehD circular dichroism spectra differs from that of Cna but strongly resembles that of a mammalian cell-surface collagen binding receptor, known as the alpha(1) integrin I domain, suggesting that they have similar secondary structures. The GehD protein is translated as a preproenzyme, secreted, and post-translationally processed into mature lipase. GehD does not have the conserved LPXTG C-terminal motif present in cell wall-anchored proteins, but it can be detected in lysostaphin cell wall extracts. A recombinant version of mature GehD binds to collagens type I, II, and IV adsorbed onto microtiter plates in a dose-dependent saturable manner. Recombinant, mature GehD protein and anti-GehD antibodies can inhibit the attachment of S. epidermidis to immobilized collagen. These results provide evidence that GehD may be a bi-functional molecule, acting not only as a lipase but also as a cell surface-associated collagen adhesin.  相似文献   

20.
G J Roth  K Titani  L W Hoyer  M J Hickey 《Biochemistry》1986,25(26):8357-8361
Purified human plasma von Willebrand factor (vWf) binds to pepsin-digested monomeric type III collagen in a saturable (KD = 1 X 10(-8) M), specific, and rapid manner with a stoichiometry of approximately 1:15 [vWf subunit (Mr 270,000):collagen trimer (Mr 300,000)]. Two reduced and alkylated CNBr peptides of vWf, termed M11 residues 542-622 and M20 residues 948-998 [Titani, K., Kumar, S., Takio, K., Ericsson, L. H., Wade, R. D., Ashida, K., Walsh, K. A., Chopek, M. W., Sadler, J. E., & Fujikawa, K. (1986) Biochemistry 25, 3171-3184], inhibited vWf binding to collagen. With 125I-vWf (2 X 10(-9) M) as ligand, M11, M20, fragment III (a dimeric, V8 protease, NH2-terminal fragment, Mr 320,000 referenced above), and unlabeled vWf inhibited binding to collagen with EC50 values of 4.8 X 10(-7), 9.4 X 10(-7), 1.1 X 10(-7), and 0.2 X 10(-7) M, respectively. M11 and M20 bind to collagen directly when 125I-labeled peptides are used as ligands. Other CNBr fragments of vWf were less effective as inhibitors (5-fold or less) and bound less avidly to collagen (5-fold or less) compared to M11 and M20. A murine anti-human vWf monoclonal antibody (MR5), which blocks the binding of vWf to collagen, bound selectively to both M11 and M20 when tested in an enzyme-linked immunoadsorbent assay.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号