首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some physicochemical properties of a homogeneous preparation of a bifunctional enzyme, fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase, were determined. The molecular weight of the enzyme is 101 000 as determined by high-speed sedimentation equilibrium. The molecular weight of dissociated enzyme is 55 000 in 6 M guanidinium chloride by sedimentation equilibrium and in sodium dodecyl sulfate by polyacrylamide gel electrophoresis. A value of 4.7 was observed for the isoelectric point. Tryptic peptide maps and high-performance liquid chromatography of the trypsin-digested enzyme revealed approximately 60 peptides. Amino acid analysis of the enzyme shows that it contains 27 lysine and 36 arginine residues per 55 000 daltons. No free N-terminal amino acid residue was detectable, suggesting that it is blocked. Hydrolysis of the enzyme by carboxypeptidases A and B releases tyrosine followed by histidine and arginine, indicating that the amino acid sequence at the carboxyl terminus is probably -Arg-His-Tyr. Tryptic digestion of [32P]phosphofructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase yields a 32P-labeled peptide detected by tryptic peptide mapping and high-performance liquid chromatography. Thermolysin digestion of CNBr-cleaved 32P-enzyme also yields a single 32P-peptide. These results indicate that fructose-6-phosphate 2-kinase:fructose-2,6-bisphosphatase is a dimer of 55 000 daltons and the subunits are very similar, if not identical.  相似文献   

2.
We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (+/- 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V(max) of 7 units mg(-)1 of protein for fructose 6-phosphate cleavage (at 30 degrees C, pH 8.5 in 50 mm glycylglycine buffer). For the aldolization reaction a V(max) of 45 units mg(-)1 of protein was found; K(m) values for the substrates were 9 mm for fructose 6-phosphate, 35 mm for dihydroxyacetone, and 0.8 mm for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier.  相似文献   

3.
Prokaryotic importers from the large family of ABC (ATP-binding cassette) transporters comprise four separate subunits: two membrane-embedded and two cytoplasmic ATP-binding subunits. This modular construction makes them ideal candidates for studies of the intersubunit interactions of membrane protein complexes that contain both hydrophobic and hydrophilic subunits. In the present paper, we focus on the vitamin B12 importer of Escherichia coli, BtuCD, that contains two transmembrane BtuC subunits and two ATP-binding BtuD subunits. We have studied the factors that induce subunit dissociation and unfolding in vitro. The BtuCD complex remains intact in alcohol and mild detergents, but urea or SDS separate the BtuC and BtuD subunits, with 6?M urea causing 80% of BtuD to be removed from BtuCD. ATP is found to stabilize the complex as a result of its binding to the BtuD subunits. In the absence of ATP, low concentrations of urea (0.5-3?M) also induce some unfolding, with approximately 14% reduction in helicity in 3?M urea, whereas, in the presence of ATP, no changes are observed. Disassembly at the BtuD-BtuD dimeric interface in BtuCD can be achieved with smaller concentrations of urea (0.5-3?M) than that required to cause disassembly at the BtuC-BtuD transmission interface (3-8?M), suggesting a stronger interaction of the latter. The results also suggest that unfolding and disassociation of subunits appear to be coupled processes. Our work provides insights into the subunit interactions of an ABC transporter and lays the foundation for studies of the reassembly of BtuCD.  相似文献   

4.
The structure of the allosterically inhibited form of phosphofructokinase from Bacillus stearothermophilus has been determined by X-ray crystallography to 7 A resolution by molecular replacement using the known structure of the active state as a starting model. Comparing the inhibited state with the active state, the tetramer is twisted about its long axis such that one pair of subunits in the tetramer rotates relative to the other pair by about 8 degrees around one of the molecular dyad axes. This rotation partly closes the binding site for the co-operative substrate fructose-6-phosphate, explaining its weaker binding to this conformational state. Within the subunit, one domain rotates relative to the other by 4.5 degrees, which further closes the fructose-6-phosphate site, without closing the cleft between the domains of the same subunit: this motion causes little change to the catalytic site. This T-state model is consistent with the simple allosteric kinetic scheme in which the active and the inhibited conformations differ in their affinities for fructose-6-phosphate, but not in their catalytic rates. It does not explain the heterotropic allosteric effects.  相似文献   

5.
Fenton AW  Reinhart GD 《Biochemistry》2002,41(45):13410-13416
Escherichia coli phosphofructokinase 1 (EcPFK) is a homotetramer with four active and four allosteric sites. Understanding of the structural basis of allosteric activation of EcPFK by MgADP is complicated by the multiplicity of binding sites. To isolate a single heterotropic allosteric interaction, hybrid tetramers were formed between wild-type and mutant EcPFK subunits in which the binding sites of the mutant subunits have decreased affinity for their respective ligands. The 1:3 (wild-type:mutant) hybrid that contained only one native active site and one native allosteric site was isolated. The affinity for the substrate fructose-6-phosphate (Fru-6-P) of a single wild-type active site is greatly decreased over that displayed by the wild-type tetramer due to the lack of homotropic activation. The free energy of activation by MgADP for this heterotropic interaction is -0.58 kcal/mol at 8.5 degrees C. This compares to -2.87 kcal/mol for a hybrid with no homotropic coupling but all four unique heterotropic interactions. Therefore, the isolated interaction contributes 20% of the total heterotropic coupling. By comparison, wild-type EcPFK exhibits a coupling free energy between Fru-6-P and MgADP of -1.56 kcal/mol under these conditions, indicating that the effects of MgADP are diminished by a homotropic activation equal to -1.3 kcal/mol. These data are not consistent with a concerted allosteric mechanism.  相似文献   

6.
AIMS: The key enzyme in the fructose-6-phosphate shunt in bifidobacteria, Fructose-6-phosphate phosphoketolase (F6PPK; E.C. 4.1.2.22.), was purified to electrophoretic homogeneity for the first time from Bifidobacterium longum (BB536). METHODS AND RESULTS: A three-step procedure comprising acetone fractionation followed by fast protein liquid chromatography (FPLC) resulted in a 30-fold purification. The purified enzyme had a molecular mass of 300 +/- 5 kDa as determined by gel filtration. It is probably a tetramer containing two different subunits with molecular masses of 93 +/- 1 kDa and 59 +/- 0.5 kDa, as determined by SDS-PAGE. CONCLUSION: The deduced N-terminal amino acid sequences of the two subunits revealed no significant similarity between them and other proteins when compared to the data bases of EMBL and SWISS-PROT, indicating that this could be the first report on N-terminal amino acid sequence of F6PPK. SIGNIFICANCE AND IMPACT OF THE STUDY: The data from this study will be used to design oligonucleotide probe specific for bifidobacteria and to study the gene encoded F6PPK.  相似文献   

7.
Two isoenzymes of fructose-6-phosphate kinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) are present in Escherichia coli K12. One isoenzyme is allosterically inhibited by phosphoenolpyruvate and activated by nucleoside diphosphates, and is a tetramer composed of four subunits of molecular weight 35 000. A simple method for the purification of this enzyme is reported. Equilibrium dialysis indicates that there are four ATP sites and four GDP sites per tetramer. The second isoenzyme is present in low quantity in wild type bacteria. This enzyme is devoid of allosteric properties. A complete method of purification is described. Determination of its molecular weight under native and denaturing conditions indicates that this protein is a dimer composed of two subunits of molecular weight 36 000. Antisera have been produced against both isoenzymes. The antiserum against one isoenzyme does not cross-react with the other. Discrepancies between our results and those of other workers are discussed.  相似文献   

8.
Sucrose-phosphate (SPS) from source leaves of soybean ( Glycine max (L.) Merr. cv. Ransom II) was purified 74-fold to a final specific activity of 1.8 U (mg protein)1. The partially purified preparation was free from phosphoglucoseisomerase (EC 5.3.1.9), pyrophosphatase (EC 3.6.1.1), phosphoenolpyruvate-phosphatase (EC 3.1.3.-), phosphofructokinase (EC 2.7.1.11), and uridine diphosphatase (EC 3.6.1.6), and was used for characterization of the kinetic and regulatory properties of the enzyme. The enzyme showed hyperbolic saturation kinetics for both fructose-6-phosphate (Km=0.57 m M ) and UDPGlucose (UDPG) (Km=4.8 m M ). The activity of SPS was inhibited by the product UDP. In vitro this inhibition could be partially overcome by the presence of Mg2+. Inorganic orthophosphate was only slightly inhibitory (35% inhibition at 25 m M phosphate). Glucose-6-phosphate (up to 20 m M ) had no effect on activity, and did not show any significant interaction with phosphate inhibition. A range of potential effectors was tested and had no effect on SPS activity: Glucose-1-phosphate, fructose-1, 6-bisphosphate, α-glycero-phosphate, dihydroxyacetone-phosphate, 3-phosphoglyceric acid, (all at 5 m M ), sucrose at 100 m M and pyrophosphate at 0.1 m M . The apparent lack of allosteric regulation of soybean SPS makes this enzyme markedly different from SPS previously characterized from spinach and maize.  相似文献   

9.
PFP的研究进展   总被引:1,自引:0,他引:1  
焦磷酸:果糖-6-磷酸1-磷酸转移酶(PFP)可催化果糖-6-磷酸与果糖-1,6-二磷酸间的可逆转变.该酶广泛存在于各种高等植物及一些微生物体内.文章综述了90年代以来有关PFP的一些研究进展.包括:PFP的种类与亚基构成、活性中心、底物特异性、酶活性的调节及功能等.  相似文献   

10.
The 1-phosphofructokinase (1-PFK, EC 2.7.1.56) from Pseudomonas putida was partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. In its kinetic properties, this enzyme resembled the 1-PFK's from other bacteria. With the substrates fructose-1-phosphate (F-1-P) and adenosine triphosphate (ATP) Michaelis-Menten kinetics were observed, the Km for one substrate being unaffected by a variation in the concentration of the other substrate. At pH 8.0, the Km values for F-1-P and ATP were 1.64 X 10(-4) M and 4.08 X 10(-4) M, respectively. At fixed concentrations of F-1-P and ATP, an increase in the Mg2+ resulted in sigmoidal kinetics. Activity was inhibited by ATP when the ratio of ATP:Mg2+ was greater than 0.5 suggesting that ATP:2 Mg2+ was the substrate and free ATP was inhibitory. Activity of 1-PFK was stimulated by K+ and to a lesser extent by NH4+ and Na+. The reaction rate was unaffected by 2 mM K2HPO4, pyruvate, phosphoenolpyruvate, adenosine monophosphate, adenosine 3',5'-cyclic monophosphate, fructose-6-phosphate, glucose-6-phosphate, 6-phosphogluconate, 2-keto-3-deoxy-6-phosphogluconate, or citrate. The results indicated that the 1-PFK from P. putida was not allosterically regulated by a number of metabolites which may play an important role in the catabolism of D-fructose.  相似文献   

11.
Enzymatic properties, renaturation and metabolic role of mannitol-1-phosphate dehydrogenase from Escherichia coli. D-mannitol-1-phosphate dehydrogenase was purified to homogeneity from Escherichia coli, and its physicochemical and enzymatic properties were investigated. The molecular weight of the polypeptide chain is 45,000 as determined by polyacrylamide gel electrophoresis in denaturing conditions. High performance size exclusion chromatography gives an apparent molecular weight of 47,000 for the native enzyme, showing that D-mannitol-1-phosphate dehydrogenase is a monomeric NAD-dependent dehydrogenase. D-mannitol-1-phosphate dehydrogenase is rapidly denatured by 6 M guanidine hydrochloride. Non-superimposable transition curves for the loss of activity and the changes in fluorescence suggest the existence of a partially folded inactive intermediate. The protein can be fully renatured after complete unfolding, and the regain of both native fluorescence and activity occurs rapidly within a few seconds at pH 7.5 and 20 degrees C. Such a high rate of reactivation is unusual for a protein of this size. D-mannitol-1-phosphate dehydrogenase is specific for mannitol-1-phosphate (or fructose-6-phosphate) as a substrate and NAD+ (or NADH) as a cofactor. Zinc is not required for the activity. The affinity of D-mannitol-1-phosphate dehydrogenase for the reduced or oxidized form of its substrate or cofactor remains constant with pH. The affinity for NADH is 20-fold higher than for NAD+. The forward and reverse catalytic rate constants of the reaction: mannitol-1-phosphate + NAD+ in equilibrium fructose-6-phosphate + NADH have different pH dependences. The oxidation of mannitol-1-phosphate has an optimum pH of 9.5, while the reduction of fructose-6-phosphate has its maximum rate at pH 7.0. At pH values around neutrality the maximum rate of reduction of fructose-6-phosphate is much higher than that of oxidation of mannitol-1-phosphate. The enzymatic properties of isolated D-mannitol-1-phosphate dehydrogenase are discussed in relation to the role of this enzyme in the intracellular metabolism.  相似文献   

12.
C F Midelfort  I A Rose 《Biochemistry》1977,16(8):1590-1596
Escherichia coli glucosamine-6-phosphate isomerase is specific for removal of the 1-pro-R hydrogen of fructose 6-phosphate (fructose-6-P). The conversion of [2-3H]glucosamine-6-P to fructose-6-P plus ammonia is accompanied by 99% exchange of tritium with water and 0.6% transfer to C-1 of fructose-6-P. The enzyme is active toward alpha-glucosamine-6-P and apparently inactive toward the beta anomer. The combination of the above results supports a cisenolamine intermediate for the reaction. The labeling of substrate and product pools in tritiated water shows that the two halves of the reaction are each freely reversible. No single step appears to be rate determining. 2-Amino-2-deoxyglucitol-6-P is an unusually strong competitive inhibitor (K1 = 2 X 10(-7) M, compared with the Km = 4 X 10(-4) M for glucosamine-6-P), suggesting the enzyme has a strong affinity for the open-chain form of glucosamine-6-P.  相似文献   

13.
A pyrophosphate: fructose-6-phosphate 1-phosphotransferase activity (EC 2.7.1.90) has been characterized in cytosol from Hevea brasiliensis latex. It is Mg+ dependent enzyme, and the cation has an optimal effect between 2.5 to 3 mM for a concentration of 1 mM of pyrophosphate and 10 mM of fructose-6-phosphate. It is activated by catalytic content of fructose-2,6-diphosphate. Its potential activity is higher than 40% of that of ATP dependent phosphofructokinase (EC 2.7.1.11). Its optimum pH is between 7.5-7.6; then, the enzyme affinity is 0.3 mM for pyrophosphate and 3.5 mM for fructose-6-phosphate. It is suggested that the transferase plays a role in the pyrophosphate metabolism and the increasing of the energetic efficiency of glycolysis and so takes a significant part in the biochemical mechanisms involved in the latex yield.  相似文献   

14.
The Methanocaldococcus jannaschii genome contains putative genes for all four nonoxidative pentose phosphate pathway enzymes. Open reading frame (ORF) MJ0960 is a member of the mipB/talC family of 'transaldolase-like' genes, so named because of their similarity to the well-characterized transaldolase B gene family. However, recently, it has been reported that both the mipB and the talC genes from Escherichia coli encode novel enzymes with fructose-6-phosphate aldolase activity, not transaldolase activity (Schürmann and Sprenger 2001). The same study reports that other members of the mipB/talC family appear to encode transaldolases. To confirm the function of MJ0960 and to clarify the presence of a nonoxidative pentose phosphate pathway in M. jannaschii, we have cloned ORF MJ0960 from M. jannaschii genomic DNA and purified the recombinant protein. MJ0960 encodes a transaldolase and displays no fructose-6-phosphate aldolase activity. It etained full activity for 4 h at 80 degrees C, and for 3 weeks at 25 degrees C. Methanocaldococcus jannaschii transaldolase has a maximal velocity (Vmax) of 1.0 +/- 0.2 micromol min(-1) mg(-1) at 25 degrees C, whereas Vmax = 12.0 +/- 0.5 micromol min(-1) mg(-1) at 50 degrees C. Apparent Michaelis constants at 50 degrees C were Km = 0.65 +/- 0.09 mM for fructose-6-phosphate and Km = 27.8 +/- 4.3 microM for erythrose-4-phosphate. When ribose-5-phosphate replaced erythrose-4-phosphate as an aldose acceptor, Vmax decreased twofold, whereas the Km was 150-fold higher. The molecular mass of the active enzyme is 271 +/- 27 kDa as estimated by gel filtration, whereas the predicted monomer size is 23.96 kDa, suggesting that the native form of the protein is probably a decamer. A readily available source of thermophilic pentose phosphate pathway enzymes including transaldolase may have direct application in enzymatic biohydrogen production.  相似文献   

15.
Fructose-2,6-bisphosphatase (EC 3.1.3.46), which hydrolyzes fructose 2,6-bisphosphate to fructose 6-phosphate and Pi, has been purified to apparent homogeneity from spinach leaves and found to be devoid of fructose-6-phosphate,2-kinase activity. The isolated enzyme is a dimer (76 kDa determined by gel filtration) composed of two 33-kDa subunits. The enzyme is highly specific and displays hyperbolic kinetics with its fructose 2,6-bisphosphate substrate (Km = 32 microM). The products of the reaction, fructose 6-phosphate and Pi, along with AMP and Mg2+ are inhibitors of the enzyme. Nonaqueous cell fractionation revealed that, like the fructose 2,6-bisphosphate substrate, fructose-2,6-bisphosphatase as well as fructose-6-phosphate,2-kinase occur in the cytosol of spinach leaves.  相似文献   

16.
Electrophoretically homogeneous phosphoglucomutase (PGM) with specific activity of 3.6 units/mg protein was isolated from pea (Pisum sativum L.) chloroplasts. The molecular mass of this PGM determined by gel-filtration is 125 +/- 4 kD. According to SDS-PAGE, the molecular mass of subunits is 65 +/- 3 kD. The Km for glucose-1-phosphate is 18.0 +/- 0.5 microM, and for glucose-1, 6-diphosphate it is 33 +/- 0.7 microM. At glucose-1-phosphate and glucose-1,6-diphosphate concentrations above 0.5 and 0.2 mM, respectively, substrate inhibition is observed. The enzyme has optimum activity at pH 7.9 and 35 degrees C. Mg2+ activates the PGM. Mn2+ activates the enzyme at concentrations below 0.2 mM, while higher concentrations have an inhibitory effect. The activity of the PGM is affected by 6-phosphogluconate, fructose-6-phosphate, NAD+, ATP, ADP, citrate, and isocitrate.  相似文献   

17.
C J Carter 《Life sciences》1983,32(17):1949-1955
There is a linear negative correlation between the activities of glutamine synthetase and fructose-1, 6-diphosphatase in normal Human putamen autopsy samples, and also in the Huntington's disease putamen. However, glutamine synthetase activity is reduced in choreic brain samples, while fructose-1, 6-diphosphatase activity is normal. The ratio of fructose-1, 6-diphosphatase to glutamine synthetase is therefore increased in Huntington's disease. The products of the two reactions, glutamine and fructose-6-phosphate, are the starting substrates for glycolipid and glycoprotein biosynthesis, via the glutamine:fructose-6-phosphate aminotransferase catalysed formation of glucoseamine-6-phosphate. The alternative metabolic route of fructose-6-phosphate leads to glycogen. The availability of glutamine, and the activity of glutamine synthetase may control fructose-6-phosphate metabolism, and the increased ratio of fructose-1,6-diphosphatase to glutamine synthetase in Huntington's disease may explain the accumulation of glycogen, and the reduction in ganglioside levels reported in this state.  相似文献   

18.
1. Rabbit liver transketolase activity was purified 56-fold using the following steps: ammonium sulfate precipitation, chromatography on DEAE-Sephadex A-25, concentration through an Amicon ultrafiltration cell and rechromatography on DEAE-Sephadex A-25. 2. The enzyme showed an optimum PH for activity at 7.8-8.0. 3. The optimum temperature was around 40 degrees C and the activation energy calculated from the Arrhenius plot was found to be 11.4 kcal/mole. 4. The molecular weight of the enzyme, as determined by gel filtration, was found to be approximately 162,000, while the content of thiamin diphosphate was between 1.8 and 2 mumole per mole protein. 5. Addition of thiamin diphosphate and magnesium chloride did not influence the activity. 6. From the kinetic studies of the enzyme, the Km values for xylulose-5-phosphate, ribose-5-phosphate and fructose-6-phosphate were 3.8 x 10(-5) M, 9.5 x 10(-5) M and 1.1 x 10(-2) M, respectively.  相似文献   

19.
Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12   总被引:9,自引:0,他引:9  
Summary We have previously proposed that 2-ketobutyrate is an alarmone in Escherichia coli. Circumstantial evidence suggested that the target of 2-ketobutyrate was the phosphoenol pyruvate: glycose phosphotransferase system (PTS). We demonstrate here that the phosphorylated metabolites of the glycolytic pathway experience a dramatic downshift upon addition of 2-ketobutyrate (or its analogues). In particular, fructose-1,6-diphosphate, glucose-6-phosphate, fructose-6-phosphate and acetyl-CoA concentrations drop by a factor of 10, 3, 4, and 5 respectively. This result is consistent with (i) an inhibition of the PTS by 2-ketobutyrate, (ii) a control of metabolism by fructose-1,6-diphosphate. Since fructose-1,6-diphosphate is an activator of phosphoenol pyruvate carboxylase and of pyruvate kinase, the concentration of their common substrate, phosphoenol pyruvate, does not decrease in parallel.Abbreviations G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - F1-6DP fructose-1,6-diphosphate - PEP phosphoenol pyruvate  相似文献   

20.
To investigate altered fructose-2,6-bisphosphate (fructose-2,6-P2) metabolism, we measured fructose-2,6-P2 levels and fructose-6-phosphate,2-kinase (fructose-6-P,2-kinase) activities in various tissues, including liver, kidney, heart, and skeletal muscle, of ventromedial hypothalamus (VMH)-lesioned rats during feeding and starvation. The plasma insulin level was 6 times or more higher in these rats than in the controls. The fructose-2,6-P2 level in liver was much greater in VMH-lesioned rats than in the controls: 15.1 +/- 2.2 nmol/g tissue versus 7.7 +/- 0.7 in the fed state, 5.3 +/- 1.1 versus 1.6 +/- 0.4 in the starved state. In kidney, heart, and skeletal muscle, fructose-2,6-P2 levels were not different between the two animal groups. The activity of hepatic fructose-6-P,2-kinase remained high after 20 h of starvation in VMH-lesioned rats, whereas it was decreased markedly in the controls. The hepatic concentration of fructose-6-phosphate was also high in VMH-lesioned rats. Both fructose-6-P,2-kinase activity and fructose-6-phosphate concentration in the liver of starved VMH-lesioned rats were comparable to those of control rats in fed conditions. These results indicate that the alteration of fructose-2,6-P2 metabolism is characteristic of liver in VMH-lesioned rats, and that the increase in hepatic fructose-2,6-P2 may activate hepatic glycolysis not only during feeding but also during starvation, leading to the enhanced lipogenesis in these obese rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号