首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of [3H]l-glutamate, [3H]l-aspartate, [3H]-aminobutyric acid ([3H]GABA), [3H]dopamine, [3H]norepinephrine and [3H]5-hydroxytryptamine (3H-5-HT) was measured in primary astroglial cultures from newborn rat cerebral hemispheres. There was a high-affinity uptake with aK m of 69.0 M for L-glutamate, 12.3 M forl-aspartate and 3.1 M for GABA. The uptake showed properties of high capacity with aV max of 17.0 nmol·mg prot–1·min–1 forl-glutamate, 1.1 nmol·mg prot–1·min–1 forl-aspartate and 0.04 nmol·mg prot–1·min–1 for GABA. No high-affinity high capacity transport system was found for the monoamines studies. Autoradiographic examination demonstrated a heavy deposit of grains suggesting a prominent accumulation of [3H]l-glutamate and [3H]l-aspartate in the astroglial-like cells of the cultures, while the [3H]GABA accumulation was less intense. On the other hand, there was only a weak accumulation of grains after incubating the cultures with [3H]dopamine, [3H]norepinephrine or [3H]5-HT. Thus, astroglial cells in culture accumulate amino acid neurotransmitters and monoamines in different ways with a high-affinity high-capacity uptake of glutamate, aspartate and GABA and a diffusion-uptake of dopamine, norepinephrine and 5-HT.  相似文献   

2.
The transport of [3H]2-deoxyglucose by brain slices was studied. Cerebral cortex slices were incubated in vitro in the presence of [3H]2-deoxyglucose, orl-[3H] glucose as a marker for diffusion. Transport was defined as the difference between [3H]2DG uptake andl-[3H]glucose uptake. Half-maximal velocity was seen at 2.0 mM 2DG and [3H]2DG transport was not inhibited by 20-fold higher concentrations ofl-glucose. Net [3H]2DG transport was unchanged in media deficient in Na+, K+, Mg2+, Ca2+ or Cl. Uptake was significantly inhibited by 1.0 mM 2,4-DNP and a suggestion of inhibition by azide was seen. These data are consistent with a hypothesis that hexose transport in the brain depends to some extent upon mitochondrial energy.  相似文献   

3.
Summary Na+–H+ exchange activity in renal brush border membrane vesicles isolated from hyperthyroid rats was increased. When examined as a function of [Na+], treatment altered the initial rate of Na+ uptake by increasingV m (hyperthyroid, 18.9±1.1 nmol Na+ · mg–1 · 2 sec–1; normal, 8.9±0.3 nmol Na+ · mg–1 · 2 sec–1), and not the apparent affinityK Na + (hyperthyroid, 7.3±1.7mm; normal, 6.5±0.9mm). When examined as a function of [H+] and at a subsaturating [Na+] (1mm), hyperthyroidism resulted in the proportional increase in Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and hyperthyroid rats. When the data were analyzed by the Hill equation, it was found that hyperthyroidism did not change then (hyperthyroid, 1.2±0.06; normal, 1.2±0.07) or the [H+]0.5 (hyperthyroid, 0.39±0.08 m; normal, 0.44±0.07 m) but increased the apparentV m (hyperthyroid, 1.68±0.14 nmol Na+ · mg–1 · 2 sec–1; normal 0.96±0.10 nmol Na+ · mg–1 · 2 sec–1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and hyperthyroid animals was not influenced by membrane potential. H+ translocation or debinding was rate limiting for Na+–H+ exchange since Na+–Na+ exchange activity was greater than Na+–H+ exchange activity. Hyperthyroidism caused a proportional increase and hypothyroidism caused a proportional decrease in Na+–Na+ and Na+–H+ exchange. We conclude that hyperthyroidism leads to either an increase in the number of functional exchangers in the membrane or exactly proportional increases in the rate-limiting steps for Na+–Na+ and Na+–H+ exchange activity.  相似文献   

4.
The metabolism ofl-proline toN-acetyl-d-glucosamine (GlcNAc) during germ tube formation ofCandida albicans (C. albicans) ATCC 1002 was studied. In uptake experiments, 6.9 nmol ofl-[14C]proline were taken up by 1×106 cells during 3 h of incubation at 37°C. The percentage of germ tube formation was 94 under the same condition. The presence of GlcNAc reduced the uptake ofl-proline to 3.0 nmol. The percentage of germ tube formation was 95 in the presence and absence of GlcNAc. The [3H]GlcNAc uptake was 3.0 nmol and was constant whetherl-proline was present or not. After the preparation of a chitin fraction from germ tubes that were labeled withl-[14C]proline, the radioactivity froml-proline was detected in the glucosamine (GlcN) fraction by thin-layer chromatography (TLC). The metabolism ofl-proline to GlcNAc in chitin during germ tube formation was confirmed in this experiment.  相似文献   

5.
Membrane vesicles from the malolactic bacterium Leuconostoc oenos were obtained by a modified version of the procedure of Kaback [Methods Enzymol 22:99–120 (1971)]. Protoplasts were produced at frequencies greater than 95% by a method entailing mutanolysis digestion and osmotic shock. Glycerol or polyethyleneglycol 600 was required as an osmotic stabilizer while the use of sucrose prevented closed vesicle formation during osmotic shock. The membrane vesicles retained their functional properties and accumulated l-malic acid in response to an ATPase-induced proton gradient across the membrane of ATP-loaded vesicles. l-Malate uptake was strongly inhibited by dicyclohexylcarbodiimide, a specific inhibitor of membrane-bound ATPase. These data support the possibility of a pH-dependent transport of l-malate. Vesicles not loaded with ATP were slightly permeable to malic acid with an initial uptake rate (0.5 nmol·l–1·s–1) similar to the diffusion rate obtained previously in a L. oenos malate-transport-deficient strain. These results confirm two simultaneous uptake mechanisms in L. oenos, a permease-mediated transport and a passive diffusion for the anionic and the undissociated forms of l-malic acid respectively.  相似文献   

6.
Astrocytes have been proposed to regulate the extracellular space in the brain, even if rather little is known about their specific functions. One possibility for obtaining more knowledge on the functions of astroglial cells is to examine how they respond on exposure to pharmacological agents. Na+-valproate is an anticonvulsive drug which is used in the treatment of several types of epilepsy. The mechanisms of action of the drug are not fully understood, but the GABA-ergic system, both in neurons and astrocytes, has been shown to be affected. In the present study, the effects of valproate were investigated on astroglial cells in primary cultures from newborn rat cerebral cortex. The transport of the drug itself and its effects on the transport of the amino acid transmitters glutamate, aspartate and -aminobutyric acid (GABA) into astrocytes were examined. The [3H]valproate transport into the astrocytes was increased after exposure tol-glutamate but notl-aspartate. On the other hand, after acute exposure for the drug, the transport of [3H]l-glutamate and [3H]l-aspartate decreased, as also did the affinity but not the transport capacity for the [3H]GABA uptake. However, after 5 days chronic valproate exposure, no effects could be seen on the uptake kinetics ofl-glutamate orl-aspartate. For GABA, the affinity decreased, while the transport capacity remained unchanged compared with controls. The results showed that valproate, glutamate, aspartate and GABA were capable of interacting significantly with each others transport into the astrocytes.  相似文献   

7.
Summary Renal brush border membrane vesicles (bbmv) from the aglomerular toadfish (Opsanus tau), isolated by differential precipitation, were tested for their ability to actively translocate (i) taurine, known to be secreted by the kidney of several marine teleosts, and (ii)l-alanine,l-glutamic acid, andd-glucose, solutes that are normally reabsorbed in the filtering nephron. Vesicular taurine uptake displayed a Na+ dependence. Transport was greatest under conditions of an inward-directed Na+ gradient, but a significant stimulation by Na+ over K+ could also be observed in the absence of a salt gradient. At high extravesicular K+, the addition of valinomycin reduced taurine uptake. Na+-dependent3H-taurine flux was almost completely inhibited by non-labeled taurine (tracer replacement) or -alanine, but was unaffected byl-alanine. Replacement of medium chloride by SCN or NO 3 in the presence of Na+ resulted in significantly lower uptake rates under both anion gradient and anion equilibrium conditions, whereas Br could almost fully substitute for the stimulatory Cl action. These results indicate the presence of an electrogenic Na+-cotransport mechanism with specificity for -amino acids in the toadfish renal brush border. Whether the system under physiological conditions mediates reabsorption or secretion of taurine remains to be determined. Toadfish bbmv also translocatedl-alanine andl-glutamic acid in a Na+-dependent manner. Possible roles for these most likely reabsorptive transport systems in a non-filtering kidney are discussed.d-glucose uptake, however, appeared to occur via Na+-independent pathways, since it was not affected by phlorizin in the presence of Na+, or by Na+ replacement.Abbreviation bbmv brush border membrane vesicles  相似文献   

8.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

9.
Analysis in mouse brain slices of the uptake of acetyl-l-[N-methyl-14C]carnitine with time showed it to be concentrative, and kinetic analysis gave aK m of 1.92 mM and aV max of 1.96 mol/min per ml, indicating the presence of a low-affinity carrier system. The uptake was energy-requiring and sodium-dependent, being inhibited in the presence of nitrogen (absence of O2), sodium cyanide, low temperature (4°C), and ouabain, and in the absence of Na+. The uptake of acetyl-l-carnitine was not strictly substrate-specific; -butyrobetaine,l-carnitine,l-DABA, and GABA were potent inhibitors, hypotaurine andl-glutamate were moderate inhibitors, and glycine and -alanine were only weakly inhibitory. In vivo, acetyl-l-carnitine transport across the blood-brain barrier had a brain uptake index of 2.4±0.2, which was similar to that of GABA. These results indicate an affinity of acetyl-l-carnitine to the GABA transport system.  相似文献   

10.
Uptake ofl-[35S]cysteic acid (L-CA) in rat synaptic membrane vesicles was investigated. Preincubation with either 10 mMl-glutamic acid (L-Glu), 25 mM L-CA, 10 mMdl-homocysteic acid, or 25 mMdl-2-amino-4-phosphonobutyrate on membrane vesicles enhanced L-[35S]CA and L-[3H]Glu uptake. Na+ (5 mM) and omission of Cl from the assay medium decreased L-[35S]CA uptake into both 10 mM L-Glu-loaded and non-loaded membrane vesicles. The anion transport blockers, 4-acetamide-4-isothiocyano-2,2-disulfonic acid stibene (SITS) and 4,4-diisothiocyano-2,2-disulfonic acid stilbene (DIDS), inhibited L-[35S]CA uptake in a dose-dependent manner. The maximal uptake rate for L-[35S]CA was decreased by 50 M SITS, while the apparent Km value of L-CA was not changed. SITS increased the EC50 value of Cl for L-[35S]CA uptake from 5 mM to 10 mM with reduction of the maximal effect. These results suggested that L-[35S]CA uptake into synaptic membrane vesicles was mediated by a SITS-sensitive hetero-exchange transport with non-labeled substrates.Abbreviations SITS 4-Acetamide-4-isothiocyano-2,2-disulfonic acid stilbene - DIDS 4,4-Diisothiocyano-2,2-disulfonic acid stilbene - CA Cysteic acid - APB 2-Amino-4-phosphonobutyrate - CSA Cysteine sulfinic acid - EGTA Ethyleneglycol bis(aminoethylether) tetraacetate - GABA -Aminobutyric acid  相似文献   

11.
Summary The studies reported here were carried out to characterize further previously described changes in membrane localized amino acid transport associated with simian virus 40 transformation of the mammalian cell line, Balb/c3T3. Membrane vesicles were prepared from confluent cultures of both simian virus 40 transformed Balb/c3T3 (SV3T3) and the untransformed parent line, Balb/c3T3 (3T3). An initial, externally imposed out>in, 100mm Na+ gradient produces acceleration of early ingress of -aminoisobutyric acid (AIB) in vesicles from both cell lines, but transient, concentrative uptake (overshooting) only in SV3T3 vesicles. Early ingress ofl-leucine is also accelerated in SV3T3 vesicles by a Na+ gradient, and overshooting is also demonstrable.Na+-gradient independent AIB permeability of SV3T3 and 3T3 membranes was estimated using uptake data, a first order rate equation and measurements of vesicle size derived from quasi-elastic light-scattering studies. AIB permeability of SV3T3 membranes is greater than that of 3T3 membranes (113 Å/min and 43 Å/min, respectively), suggesting that overshooting in 3T3 vesicles is not attenuated by a Na+-independent AIB leak. Na+ permeability of the two membranes is similar, ruling out the possibility that a slower rate of Na+ equilibration across the SV3T3 membrane allows development of the overshoot.In SV3T3 vesicles the height of a Na+-gradient dependent overshoot varies with the initial [Na+] o /[Na+] i ratio, and [Na+] o /[Na+] i is linearly related to ln AIB uptake at overshoot peak/AIB uptake at equilibrium, consistent with the possibility that for [Na+] o /[Na+] i ratios in the range studied, AIB overshoot is energized by a constant proportion of the energy available from the initial electrochemical gradient for Na+.These results are consistent with the possibility that Na+-gradient dependent overshooting in SV3T3 vesicles is produced by Na+-amino acid carrier interactions resulting in either an increase in maximum transport velocity or an incrase in carrier affinity for AIB.Abbreviations used 3T3 Balb/c3T3 - SV3T3 simian virus 40 transformed Balb/c3T3 - AIB -aminoisobutyric acid  相似文献   

12.
The first step of riboflavin absorption was studied by determining the uptake of the vitamin by rat small intestinal brush border membrane vesicles. Vesicles were incubated at 25°C in the presence of [3H]-riboflavin at concentrations within the physiological intraluminal range for rat. The time course of [3H]-riboflavin uptake was unaffected by Na+ or K+ gradients. The 5 sec uptake rate plotted as a function of the initial concentration of [3H]-riboflavin in the medium (0.125 to 7.5 m) revealed the presence of a dual mechanism, with a saturable component (apparent kinetic constants: 0.12 m for K m and 0.36 pmol · mg-1 protein · 5 sec-1 for J max) prevailing at low concentrations (<2 m), and a nonsaturable component prevailing at higher concentrations. The presence of a carrier-mediated system for riboflavin was validated by counter-transport experiments. At equilibrium, uptake was almost completely accounted for by membrane binding, whereas at earlier times the transport component accounted for about 30% of total uptake. The plot of [3H]-riboflavin binding at equilibrium as a function of its concentration in the medium was quite similar to that of the 5 sec uptake rate in both intact and osmotically shocked vesicles and demonstrated the occurrence of a saturable component: binding constants were 0.07 (K d) in m), 0.54 (B max in pmol · mg-1 protein), and 0.11 (K d), 1.13 (B max, respectively, indicating the existence of specific riboflavin binding sites. The specificity of riboflavin binding to the membrane was confirmed by preliminary studies with structural analogues. Specific binding could represent the first step of a specific riboflavin entry mechanism in enterocytes.This research was supported by grants from Italian MPI 60% (1989, 1992) and CNR n. 90, 02467 CT 04. We wish to express our gratitude to Prof. E. Perucca (Department of Internal Medicine, Clinical Pharmacology Unit, University of Pavia) for revising the English, and to Mrs. M. Agrati Greco and Mrs. P. Vai Gatti for secretarial assistance and excellent typing.  相似文献   

13.
Astrocytes possess a concentrativel-ascorbate (vitamin C) uptake mechanism involving a Na+-dependentl-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellularl-ascorbate on the activity of this transport system. Initial rates ofl-ascorbate uptake were measured by incubating primary cultures of rat astrocytes withl-[14C]ascorbate for 1 min at 37°C. We observed that the apparent maximal rate of uptake (V max) increased rapidly (<1 h) when cultured cells were deprived ofl-ascorbate. In contrast, there was no change in the apparent affinity of the transport system forl-[14C]ascorbate. The increase inV max was reversed by addition ofl-ascorbate, but notD-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures withl-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.  相似文献   

14.
Brush-border membrane vesicles (BBMV) were prepared from superficial rat renal cortex by a divalent2+-precipitation technique using either CaCl2 or MgCl2. The dependence of the initial [14C]-d-glucose (or [3H]-l-proline) uptake rate and the extent of the overshoot of d-glucose or l-proline uphill accumulation from solutions containing 100 mm Na+ salt, was found to be dependent upon the precipitating divalent cation. With Mg2+ precipitation the initial uptake and overshoot accumulation of either d-glucose or l-proline were enhanced compared to BBMV prepared by Ca2+ precipitation. When the anion composition of the media was varied (uptake in Cl media in comparison to gluconate-containing media) it was found that the Cl-dependent component of the initial uptake was markedly depressed with Ca2+-prepared BBMV (104.99 ± 33.31 vs. 13.83 ± 1.44 pmoles/sec/mg protein for Mg2+ and Ca2+ prepared vesicles respectively). When Ca2+ was loaded into Mg2+ prepared BBMV using a freeze-thaw technique, it was found that the magnitude and Cl enhancement of d-glucose transport was reduced in a dose-dependent manner. Neomycin, an inhibitor of phospholipase C, had no effect on the reduction of d-glucose uptake by Ca2+ in Mg2+ prepared vesicles. In contrast, phosphatase inhibitors such as vanadate and fluoride were able to partially reverse the Ca2+ inhibition of d-glucose uptake and restore the enhancement due to Cl media. In addition, inhibitors of protein phosphatase 2B, deltamethrin (50 nm) and trifluoperazine (10 μm), caused partial reversal of Ca2+-dependent inhibition of d-glucose uptake. Direct measurement of changes in the bi-ionic (Cl vs. gluconate) transmembrane electrical potential differences using the cyanine dye, 3,3′-dipropylthiodicarbocyanine iodide DiSC3-(5) confirmed that Cl conductance was reduced in Ca2+-prepared vesicles. We conclude that a Cl conductance coexists with Na+ cotransport in rat renal BBMV and this may be subject to negative regulation by Ca2+ via stimulation of protein phosphatase (PP2B). Received: 14 December 1994/Revised: 27 November 1995  相似文献   

15.
The uptake ofl-[3H]arginine into synaptosomes prepared from rat cerebellum and cortex occurred by a high-affinity carrier-mediated process. The uptake of arginine appeared to be potentiated by removal of extracellular Na+, inhibited by high levels of extracellular K+, but not by depolarization with veratridine or 4-amino pyridine. The effect of Na+ removal or K+ elevation did not seem to be due to changes in intracellular Ca2+ or pH. In both brain regions, uptake was significantly inhibited byl-arginine,l-lysine,l-ornithine, andl-homoarginine, but not byd-arginine norl-citrulline. Uptake was also inhibited by NG-monomethyl-l-arginine acetate, but not by NG-nitro-l-arginine methyl ester nor NG-nitro-l-arginine except in the cortex at a concentration of 1 mM. The results indicate that the carrier system operating in synaptosomes showed many of the characteristics of the ubiquitous y+ system seen in many other tissues, although its apparent sensitivity to variations in extracellular Na+ was unusual.  相似文献   

16.
Our earlier observations showed thatl-lysine enhanced the activity of diazepam against seizures induced by pentylenetetrazol (PTZ), and increased the affinity of benzodiazepine receptor binding in a manner additive to that caused by -aminobutyric acid (GABA). The present paper provides additional evidence to show thatl-lysine has central nervous system depressant-like characteristics.l-lysine enhanced [3H]flunitrazepam (FTZ) binding in brain membranes was dose-dependent and stimulated by chloride, bromide and iodide, but not fluoride. Enhancement of [3H]FTZ binding byl-lysine at a fixed concentration was increased by GABA but inhibited by pentobarbital between 10–7 to 10–3M. While GABA enhancement of [3H]FTZ binding was inhibited by the GABA mimetics imidazole acetic acid and tetrahydroisoxazol pyridinol, the enhancement by pentobarbital andl-lysine of [3H]FTZ binding was dose-dependently increased by these two GABA mimetics. The above results suggest thatl-lysine and pentobarbital acted at the same site of the GABA/benzodiazepine receptor complex which was different from the GABA binding site. The benzodiazepine receptor antagonist imidazodiazepine Ro15-1788 blocked the antiseizure activity of diazepam against PTZ. Similar to pentobarbital, the anti-PTZ effect ofl-lysine was not blocked by Ro15-1788. Picrotoxinin and the GABA, receptor antagonist bicuculline partially inhibitedl-lysine's enhancement of [3H]FTZ binding with the IC50s of 2 M and 0.1 M, respectively. The convulsant benzodiazepine Ro5-3663 dose-dependently inhibited the enhancement of [3H]FTZ binding byl-lysine. This article shows the basic amino acidl-lysine to have a central nervous system depressant characteristics with an anti-PTZ seizure activity and an enhancement of [3H]FTZ binding similar to that of barbiturates but different from GABA.  相似文献   

17.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

18.
To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release ofl-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinty glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process forl-[3H] glutamate resulted in elevation ofV max with no significant alteration inK t as compared to age-matched controls. Depolarization-induced release ofl-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat.  相似文献   

19.
Summary We have investigated transport of the amino acid glutamine across the surface membranes of prophase-arrestedXenopus laevis oocytes. Glutamine accumulation was linear with time for 30 min; it was stereospecific with aK m of 0.12±0.02mm andV max of 0.92±0.17 pmol/oocyte · min forl-glutamine. Transport ofl-glutamine was Na+-dependent, the cation not being replaceable with Li+, K+, choline, tris(hydroxymethyl)-aminomethane (Tris), tetramethylammonium (TMA) or N-methyld-glucamine NMDG); external Cl appeared to be necessary for full activation of Na+-dependent glutamine transport. Two external Na+ may be required for the transport of one glutamine molecule.l-glutamine transport (at 50 m glutamine) was inhibited by the presence of other amino acids:l-alanine,d-alanine,l-leucine,l-asparagine andl-arginine (about 60% inhibition at 1mm);l-histidine,l-valine and glycine (25 to 40% inhibition at 1mm);l-serine,l-lysine,l-phenylalanine andl-glutamate (45 to 55% inhibition at 10mm). N-methylaminoisobutyric acid (meAIB) had no effect at 10mm, but 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) inhibited Na+/glutamine transport by about 50% at 10mm.l-glutamine was a competitive inhibitor of the Na+-dependent transport ofl-alanine,d-alanine andl-arginine; this evidence is consistent with the existence of a single system transporting all four amino acids. Glutamine uptake in oocytes appears to be catalyzed by a transport system distinct from the cotransport Systems A, ASC, N and Gly, although it resembles System B0,+.  相似文献   

20.
The uptake ofl-[3H]glutamate,l-[3H]aspartate, -[3H]aminobutric acid (GABA), [3H]dopamine,dl-[3H]norepinephrine and [3H]5-hydroxytryptamine (5-HT) was studied in astrocytes cultured from the cerebral cortex, striatum and brain stem of newborn rat and grown for 2 weeks in primary cultures. The astrocytes exhibited a high-affinityl-glutamate uptake withK m values ranging from 11 to 110 M.V max values were 4.5 in cerebral cortex, 39.1 in striatum, and 0.4 in brain stem, nmol per mg cell protein per min. There was a less prominent high-affinity uptake ofl-aspartate withK m values from 88 to 187 M.V max values were 7.4 in cerebral cortex, 37.1 in striatum, and 3.1 in brain stem, nmol per mg cell protein per min. The high-affinity GABA uptake exhibitedK m values ranging from 5 to 17 M andV max values were 0.01 for cerebral cortex, 0.04 for striatum, and 0.1 for brain stem, nmol per mg cell protein per min. No high-affinity, high-capacity uptake was found for the monoamines. The results demonstrate a heterogeneity among the astroglial cells cultivated from the different brain regions concerning the uptake capacity of amino acid neurotransmitters. Furthermore, amino acid transmitters and monoamines are taken up by the cells in different ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号