首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Borna disease virus (BDV) p24 phosphoprotein is an abundant protein in BDV-infected cultured cells and animal brains. Therefore, there is a possibility that binding of the p24 protein to cellular factor(s) induces functional alterations of infected neural cells in the brain. To identify a cellular protein(s) that interacts with BDV p24 protein, we performed far-Western blotting with extracts from various cell lines. Using recombinant p24 protein as a probe, we detected a 30-kDa protein in all cell lines examined. Binding between the 30-kDa and BDV p24 proteins was also demonstrated using BDV p24 affinity and ion-exchange chromatography columns. Microsequence analysis of the purified 30-kDa protein revealed that its N terminus showed complete homology with rat amphoterin protein, which is a neurite outgrowth factor abundant in the brain during development. Mammalian two-hybrid and immunoprecipitation analyses also confirmed that amphoterin is a specific target for the p24 protein in vivo. Furthermore, we showed that infection by BDV, as well as purified p24 protein in the medium, significantly decreased cell process outgrowth of cells grown on laminin, indicating the functional inhibition of amphoterin by interaction with the p24 protein. Immunohistochemical analysis revealed decreased levels of amphoterin protein at the leading edges of BDV-infected cells. Moreover, the expression of the receptor for advanced glycation end products, of which the extracellular moiety is a receptor for amphoterin, was not significantly activated in BDV-infected cells during the process of extension, suggesting that the secretion of amphoterin from the cell surface is inhibited by the binding of the p24 protein. These results suggested that BDV infection may cause direct damage in the developing brain by inhibiting the function of amphoterin due to binding by the p24 phosphoprotein.  相似文献   

2.
3.
Borna disease virus (BDV) is an enveloped virus with a nonsegmented negative-strand RNA genome whose organization is characteristic of Mononegavirales. BDV cell entry follows a receptor-mediated endocytosis pathway, which is initiated by the recognition of an as-yet-unidentified receptor at the cell surface by the virus glycoprotein G. BDV G is synthesized as a precursor (GPC) that is cleaved by the cellular protease furin to produce the mature glycoproteins GP1 and GP2, which have been implicated in receptor recognition and pH-dependent fusion events, respectively. BDV is highly neurotropic and its spread in cultured cells proceeds in the absence of detectable extracellular virus or syncytium formation. BDV spread has been proposed to be strictly dependent on the expression and correct processing of BDV G. Here we present evidence that cell-to-cell spread of BDV required neither the expression of cellular receptors involved in virus primary infection, nor the furin-mediated processing of BDV G. We also show that in furin-deficient cells, the release of BDV particles induced by the treatment of BDV-infected cells with hypertonic buffer was not significantly affected, while virion infectivity was dramatically impaired, correlating with the decreased incorporation of BDV G species into viral particles. These findings support the view that the propagation of BDV within the central nervous systems of infected hosts involves both a primary infection that follows a receptor-mediated endocytosis pathway and a subsequent cell-to-cell spread that is independent of the expression of the primary receptor and does not require the processing of BDV G into GP1 and GP2.  相似文献   

4.
5.
6.
7.
Transition from G(2) to M phase, a cell cycle checkpoint, is regulated by the Cdc2-cyclin B1 complex. Here, we report that persistent infection with Borna disease virus (BDV), a noncytolytic RNA virus infecting the central nervous system, results in decelerated proliferation of infected host cells due to a delayed G(2)-to-M transition. Persistent BDV-infected rat fibroblast cells showed reduced proliferation compared to uninfected cells. In pull-down assays we observed an interaction of the viral nucleoprotein with the Cdc2-cyclin B1 complex. Transfection of the viral nucleoprotein but not of the phosphoprotein also results in decelerated proliferation. This phenomenon was found in BDV-susceptible primary rat fibroblast cells and also in primary mouse cells, which are not susceptible to BDV infection. This is the first evidence that the noncytolytic Borna disease virus can manipulate host cell functions via interaction of the viral nucleoprotein with mitotic entry regulators. BDV preferentially infects and persists in nondividing neurons. The present report could give an explanation for this selective choice of host cell by BDV.  相似文献   

8.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.  相似文献   

9.
Open reading frame IV (ORF-IV) of Borna disease virus (BDV) encodes a protein with a calculated molecular mass of ca. 57 kDa (p57), which increases after N glycosylation to 94 kDa (gp94). The unglycosylated and glycosylated proteins are proteolytically cleaved by the subtilisin-like protease furin. Furin most likely recognizes one of three potential cleavage sites, namely, an arginine at position 249 of the ORF-IV gene product. The furin inhibitor decRVKRcmk decreases the production of infectious BDV significantly, indicating that proteolytic cleavage of the gp94 precursor molecule is necessary for the full biological activity of the BDV glycoprotein.  相似文献   

10.
The genome of equine infectious anemia virus (EIAV) contains several small open reading frames (ORFs), the importance of which in the development of the virus is not clear. We investigated the possibility that the largest of these ORFs (ORF S3) is expressed during the course of the viral infection. The ORF S3 information was expressed in Escherichia coli, and the antigen was used to raise monospecific antiserum. A 20-kDa protein expressed in cells producing EIAV was identified as the gene product of ORF S3. Furthermore, sera from EIAV-infected animals specifically recognized this protein, indicating that the ORF S3 antigen is expressed in vivo as well. A model for the expression of this new viral antigen is presented. The proposed splicing pattern is similar to that of the VEP-1 protein of maedi-visna-virus, which tempts us to speculate that ORF S3 defines the second exon of the EIAV Rev protein.  相似文献   

11.
Characterization and cloning of gene 5 of Bacillus subtilis phage phi 29   总被引:3,自引:0,他引:3  
G Martín  M Salas 《Gene》1988,67(2):193-201
Sequencing of the phi 29 DNA region [open reading frames (ORFs) 12, 11 and 10] between genes 6 and 4 of the mutant ts5(219) showed that a G in the wild-type phage had been changed to an A in the mutant at position 218 of ORF 10 indicating that this ORF corresponds to gene 5. ORF 10 was cloned in plasmid pPLc28 under the control of the PL promoter of phage lambda and, after heat induction of the Escherichia coli cells carrying the recombinant plasmid pGM26, a 12-kDa protein was overproduced, accounting for about 5% of the de novo synthesized protein. Introduction of a nonsense mutation in ORF 10 indicated that the latter codes for the 12-kDa protein. The predicted secondary structure, the hydrophilicity values and the antigenic regions of protein p5 are discussed.  相似文献   

12.
Baculovirus GP64 is a low-pH-dependent membrane fusion protein required for virus entry and cell-to-cell transmission. Recently, GP64 has generated interest for practical applications in mammalian systems. Here we examined the membrane fusion function of GP64 from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressed in mammalian cells, as well as its capacity to functionally complement a mammalian virus, human respiratory syncytial virus (HRSV). Both authentic GP64 and GP(64/F), a chimeric protein in which the GP64 cytoplasmic tail domain was replaced with the 12 C-terminal amino acids of the HRSV fusion (F) protein, induced low-pH-dependent cell-cell fusion when expressed transiently in HEp-2 (human) cells. Levels of surface expression and syncytium formation were substantially higher at 33 degrees C than at 37 degrees C. The open reading frames (ORFs) encoding GP64 or GP(64/F), along with two marker ORFs encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS), were used to replace all three homologous transmembrane glycoprotein ORFs (small hydrophobic SH, attachment G, and F) in a cDNA of HRSV. Infectious viruses were recovered that lacked the HRSV SH, G, and F proteins and expressed instead the GP64 or GP(64/F) protein and the two marker proteins GFP and GUS. The properties of these viruses, designated RSDeltaSH,G,F/GP64 or RSDeltaSH,G,F/GP(64/F), respectively, were compared to a previously described HRSV expressing GFP in place of SH but still containing the wild-type HRSV G and F proteins (RSDeltaSH [A. G. Oomens, A. G. Megaw, and G. W. Wertz, J. Virol., 77:3785-3798, 2003]). By immunoelectron microscopy, the GP64 and GP(64/F) proteins were shown to incorporate into HRSV-induced filaments at the cell surface. Antibody neutralization, ammonium chloride inhibition, and replication levels in cell culture showed that both GP64 proteins efficiently mediated infectivity of the respective viruses in a temperature-sensitive, low-pH-dependent manner. Furthermore, RSDeltaSH,G,F/GP64 and RSDeltaSH,G,F/GP(64/F) replicated to higher levels and had significantly higher stability of infectivity than HRSVs containing the homologous HRSV G and F proteins. Thus, GP64 and a GP64/HRSV F chimeric protein were functional and efficiently complemented an unrelated human virus in mammalian cells, producing stable, infectious virus stocks. These results demonstrate the potential of GP64 for both practical applications requiring stable pseudotypes in mammalian systems and for studies of viral glycoprotein requirements in assembly and pathogenesis.  相似文献   

13.
A 2.3-kb genomic clone has been isolated from the region where the tissue-specific puff, Balbiani ring a (BRa), is found on chromosome IV of the special lobe of Chironomus thummi salivary gland cells. The clone was characterized by nucleotide sequence analysis. Two clusters of direct tandem repeats were identified, as well as large and small open reading frames (ORFs). The large ORF was fused to an Escherichia coli lacZ gene. Antibodies against the beta-galactosidase/ORF fusion protein reacted selectively on Western blots with a 67-kDa protein. Western-blot analysis and immunoelectron microscopy showed that this protein was distributed in the cells of all larval tissues examined. We concluded that BRa, a tissue-specific puff, whose activity correlates with the synthesis of 160-kDa secretory protein [Kolesnikov et al., Chromosoma 83 (1981) 661-677], may also contain a gene which is not expressed in a tissue-specific manner.  相似文献   

14.
To determine if neutralizing epitopes of Bluetongue virus (BTV) 17 are host dependent, e.g., that monoclonal antibodies (mAb) to Bluetongue virus 17 (BTV 17) differ in their ability to neutralize BTV infectivity in insect versus mammalian cells, a panel of neutralizing mAb was developed. The relative neutralizing titer of eight mAb for BTV 17 infectivity in mammalian versus insect target cells was determined. Four mAb differed in their relative neutralization titer when assayed on mammalian target cells as compared to insect target cells. These findings suggest that different epitopes involved in neutralization might be important in virus infectivity and neutralization in mammalian versus insect target cells. To determine which viral protein(s) these mAb bind, the specificity of the mAb was determined by radioimmunoprecipitations. Five BTV 17 neutralizing mAb bound to the major outer coat protein P2, a 98-kDa protein, whereas the BTV protein(s) bound by the other three neutralizing mAb could not be determined. The potential role of the two BTV outer coat proteins in infection of mammalian and insect host cells is discussed.  相似文献   

15.
Varicella-zoster virus (VZV) open reading frame 63 (ORF63), located between nucleotides 110581 and 111417 in the internal repeat region, encodes a nuclear phosphoprotein which is homologous to herpes simplex virus type 1 (HSV-1) ICP22 and is duplicated in the terminal repeat region as ORF70 (nucleotides 118480 to 119316). We evaluated the role of ORFs 63 and 70 in VZV replication, using recombinant VZV cosmids and PCR-based mutagenesis to make single and dual deletions of these ORFs. VZV was recovered within 8 to 10 days when cosmids with single deletions were transfected into melanoma cells along with the three intact VZV cosmids. In contrast, VZV was not detected in transfections carried out with a dual deletion cosmid. Infectious virus was recovered when ORF63 was cloned into a nonnative AvrII site in this cosmid, confirming that failure to generate virus was due to the dual ORF63/70 deletion and that replication required at least one gene copy. This requirement may be related to our observation that ORF63 interacts directly with ORF62, the major immediate-early transactivating protein of VZV. ORF64 is located within the inverted repeat region between nucleotides 111565 and 112107; it has some homology to the HSV-1 Us10 gene and is duplicated as ORF69 (nucleotides 117790 to 118332). ORF64 and ORF69 were deleted individually or simultaneously using the VZV cosmid system. Single deletions of ORF64 or ORF69 yielded viral plaques with the same kinetics and morphology as viruses generated with the parental cosmids. The dual deletion of ORF64 and ORF69 was associated with an abnormal plaque phenotype characterized by very large, multinucleated syncytia. Finally, all of the deletion mutants that yielded recombinants retained infectivity for human T cells in vitro and replicated efficiently in human skin in the SCIDhu mouse model of VZV pathogenesis.  相似文献   

16.
We developed the antigen capture enzyme-linked immunosorbent assay (ELISA) systems for quantification of Borna disease virus (BDV) major antigens, p40 and p24. Using these ELISAs, we quantified the two proteins in various BDV-infected materials, including the cell lysates and culture supernatants as well as the homogenates of experimental animal brains. The ELISAs were also applied to measure the infectious titer of BDV in persistently infected cell lines. Quantitative analysis with these ELISAs allowed us to measure the molecular ratio between the p40 and p24 in infected samples. Interestingly, the ratio of p24 to p40 in persistently infected cells was much higher than that observed in acutely infected cells although the ratios in the supernatants from both cell lines were quite similar. BDV-inoculated gerbil brain cells showed a relatively high ratio of p24 to p40 as compared with acutely infected cells. These observations suggested that the molecular ratio between the proteins strongly depended on the infectious status of BDV in the host cells. The ELISA system developed here could be a convenient method for the quantification of BDV infection and may also be beneficial for understanding viral replication and infectious status in the host cells.  相似文献   

17.
Four structural proteins of Lelystad virus (Arteriviridae) were recognized by monoclonal antibodies in a Western immunoblotting experiment with purified virus. In addition to the 18-kDa integral membrane protein M and the 15-kDa nucleocapsid protein N, two new structural proteins with molecular masses of 45 to 50 kDa and 31 to 35 kDa, respectively, were detected. Monoclonal antibodies that recognized proteins of 45 to 50 kDa and 31 to 35 kDa immunoprecipitated similar proteins expressed from open reading frames (ORFs) 3 and 4 in baculovirus recombinants, respectively. Therefore, the 45- to 50-kDa protein is encoded by ORF3 and the 31- to 35-kDa protein is encoded by ORF4. Peptide-N-glycosidase F digestion of purified virus reduced the 45- to 50-kDa and 31- to 35-kDa proteins to core proteins of 29 and 16 kDa, respectively, which indicates N glycosylation of these proteins in the virion. Monoclonal antibodies specific for the 31- to 35-kDa protein neutralized Lelystad virus, which indicates that at least part of this protein is exposed at the virion surface. We propose that the 45- to 50-kDa and 31- to 35-kDa structural proteins of Lelystad virus be named GP3 and GP4, to reflect their glycosylation and the ORFs from which they are expressed. Antibodies specific for GP3 and GP4 were detected by a Western immunoblotting assay in swine serum after an infection with Lelystad virus.  相似文献   

18.
Borna disease virus (BDV) is a neurotropic virus that causes a persistent infection in the central nervous system (CNS) of many vertebrate species. Although a severe reactive gliosis is observed in experimentally BDV-infected rat brains, little is known about the glial reactions contributing to the viral persistence and immune modulation in the CNS. In this regard, we examined the expression of an astrocyte-derived factor, S100B, in the brains of Lewis rats persistently infected with BDV. S100B is a Ca(2+)-binding protein produced mainly by astrocytes. A prominent role of this protein appears to be the promotion of vascular inflammatory responses through interaction with the receptor for advanced glycation end products (RAGE). Here we show that the expression of S100B is significantly reduced in BDV-infected brains despite severe astrocytosis with increased glial fibrillary acidic protein immunoreactivity. Interestingly, no upregulation of the expression of S100B, or RAGE, was observed in the persistently infected brains even when incited with several inflammatory stimuli, including lipopolysaccharide. In addition, expression of the vascular cell adhesion molecule 1 (VCAM-1), as well as the infiltration of encephalitogenic T cells, was significantly reduced in persistently infected brains in which an experimental autoimmune encephalomyelitis was induced by immunization with myelin-basic protein. Furthermore, we demonstrated that the continuous activation of S100B in the brain may be necessary for the progression of vascular immune responses in neonatally infected rat brains. Our results suggested that BDV infection may impair astrocyte functions via a downregulation of S100B expression, leading to the maintenance of a persistent infection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号