首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Kast  C Wehrli  H Hennecke 《FEBS letters》1991,293(1-2):160-163
Phenylalanyl-tRNA synthetase (PheRS; alpha 2 beta 2 subunit structure) is a member of class II of tRNA synthetases. We report here the genetic analysis of an Escherichia coli mutant strain which is auxotrophic for phenylalanine because it has a PheRS with a decreased affinity for phenylalanine. The mutant pheS gene encoding the PheRS alpha subunit was cloned and sequenced, and the deviation from the wild-type gene was found to result in a Gly191-to-Asp191 exchange. This alteration is located within motif 2, one of 3 conserved sequence motifs characteristic for class II aminoacyl-tRNA synthetases. Motif 2 may thus participate in the formation of the phenylalanine binding site in PheRS.  相似文献   

2.
Roy H  Ibba M 《Biochemistry》2006,45(30):9156-9162
Phenylalanyl-tRNA synthetase (PheRS) is a multidomain (alphabeta)2 heterotetrameric protein responsible for synthesizing Phe-tRNA(Phe) during protein synthesis. Previous studies showed that the alpha subunit forms the catalytic core of the enzyme, while the beta subunit contains a number of autonomous structural modules with a wide range of functions including tRNA anticodon binding and editing of the misaminoacylated species Tyr-tRNA(Phe). The B2 domain of the beta subunit is a structural homologue of the EMAPII/OB fold, which has been shown in other systems to contribute to tRNA binding. Structural studies of PheRS indicated that the B2 domain is distant from bound tRNA(Phe), leaving the role of this module in question. On the basis of homology modeling with other EMAPII domain-containing proteins, the 110 amino acid B2 domain was deleted to produce PheRS deltaB2. Full-length PheRS and PheRS deltaB2 showed comparable kinetics for in vitro aminoacylation, and both enzymes complemented a defect in phenylalanylation in vivo. PheRS deltaB2 showed a 2-fold drop compared to full-length PheRS in the catalytic efficiency (kcat/KM) of Tyr-tRNA(Phe) hydrolysis, suggesting a role for the B2 domain in post-transfer editing. A comparison of tRNA binding by full-length PheRS and PheRS deltaB2 indicated that the B2 domain acts as a secondary tRNA-binding site that could contribute to editing by promoting the translocation of mischarged tRNA to the editing site of PheRS. This proposed role for the B2 domain of PheRS is consistent with previous studies, suggesting that the highly conserved EMAPII fold is able to modulate the affinity of tRNA for its primary binding site.  相似文献   

3.
The crystal structure of the ternary complex of (alphabeta)(2) heterotetrameric phenylalanyl-tRNA synthetase (PheRS) from Thermus thermophilus with cognate tRNA(Phe) and a nonhydrolyzable phenylalanyl-adenylate analogue (PheOH-AMP) has been determined at 3.1 A resolution. It reveals conformational changes in tRNA(Phe) induced by the PheOH-AMP binding. The single-stranded 3' end exhibits a hairpin conformation in contrast to the partial unwinding observed previously in the binary PheRS.tRNA(Phe) complex. The CCA end orientation is stabilized by extensive base-specific interactions of A76 and C75 with the protein and by intra-RNA interactions of A73 with adjacent nucleotides. The 4-amino group of the "bulged out" C75 is trapped by two negatively charged residues of the beta subunit (Glubeta31 and Aspbeta33), highly conserved in eubacterial PheRSs. The position of the A76 base is stabilized by interactions with Hisalpha212 of motif 2 (universally conserved in PheRSs) and class II-invariant Argalpha321 of motif 3. Important conformational changes induced by the binding of tRNA(Phe) and PheOH-AMP are observed in the catalytic domain: the motif 2 loop and a "helical" loop (residues 139-152 of the alpha subunit) undergo coordinated displacement; Metalpha148 of the helical loop adopts a conformation preventing the 2'-OH group of A76 from approaching the alpha-carbonyl carbon of PheOH-AMP. The unfavorable position of the terminal ribose stems from the absence of the alpha-carbonyl oxygen in the analogue. Our data suggest that the idiosyncratic feature of PheRS, which aminoacylates the 2'-OH group of the terminal ribose, is dictated by the system-specific topology of the CCA end-binding site.  相似文献   

4.
The crystal structures of Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS) complexed with phenylalanine and phenylalaninyl-adenylate (PheOH-AMP), the synthetic analogue of phenylalanyl-adenylate, have been determined at 2.7A and 2.5A resolution, respectively. Both Phe and PheOH-AMP are engulfed in the active site cleft of the catalytic alpha-subunit of PheRS, and neither makes contact with the PheRS beta-subunit. The conformations and binding of Phe are almost identical in both complexes. The recognition of Phe by PheRS is achieved through a mixture of multiple van der Waals interactions and hydrogen bonds. The side-chain of the Phe substrate is sandwiched between the hydrophobic side-chains of Phealpha258 and Phealpha260 on one side, and the main-chain atoms of the two adjacent beta-strands on the other. The side-chains of Valalpha261 and Alaalpha314 form the back wall of the amino acid binding pocket. In addition, PheRS residues (Trpalpha149, Seralpha180, Hisalpha178, Argalpha204, Glnalpha218, and Glualpha220) form a total of seven hydrogen bonds with the main-chain atoms of Phe. The conformation of PheOH-AMP and the network of interactions of its AMP moiety with PheRS are reminiscent of the other class II synthetases. The structural similarity between PheRS and histidyl-tRNA synthetase extends to the amino acid binding site, which is normally unique for each enzyme. The complex structures suggest that the PheRS beta-subunit may affect the first step of the reaction (formation of phenylalanyl-adenylate) through the metal-mediated conserved alpha/beta-subunit interface. The modeling of tyrosine in the active site of PheRS revealed no apparent close contacts between tyrosine and the PheRS residues. This result implies that the proofreading mechanism against activated tyrosine, rather than direct recognition, may play the major role in the PheRS specificity.  相似文献   

5.
6.
FRS1 and FRS2, the structural genes encoding the large (alpha) and small (beta) subunits of yeast phenylalanyl-tRNA synthetase (PheRS) were placed under the control of the lacZ promoter by creating an artificial operon. The FRS2 gene was fused next to the promoter, followed by a 14 base pair intergenic sequence containing a translation reinitiation site in front of the FRS1 coding sequences. The engineered PheRS has 16 N-terminal amino acids from beta-galactosidase fused to the beta subunit. However, the purified protein shows a Km value for tRNA(Phe) that is indistinguishable from that of the the native enzyme. The product of the FRS2-FRS1 operon is not able to complement thermosensitive E. coli PheRS, indicating the lack of heterologous aminoacylation in vivo. We made a deletion in the FRS2 gene that removed about 150 amino terminal residues of the beta subunit. The truncated protein showed intact ATP-PPi exchange, whereas tRNA aminoacylation was lost. This result is similar to that of limited proteolysis performed on the native enzyme that yielded a tetrameric alpha 2 beta'2 structure, able to form aminoacyladenylate but unable to bind tRNA(Phe). A deletion of 50 amino acids from the carboxyl terminus of the beta chain resulted in the loss of both enzyme activities; this suggests the participation of the C-terminal end of the beta subunit in the active site or in subunit assembly to yield a tetrameric functional enzyme.  相似文献   

7.
Site-directed incorporation of the amino acid analogue p-fluoro-phenylalanine (p-F-Phe) was achieved in Escherichia coli. A yeast suppressor tRNA(Phe)amber/phenylalanyl-tRNA synthetase pair was expressed in an analogue-resistant E. coli strain to direct analogue incorporation at a programmed amber stop codon in the DHFR marker protein. The programmed position was translated to 64-75% as p-F-Phe and the remainder as phenylalanine and lysine. Depending on the expression conditions, the p-F-Phe incorporation was 11-21-fold higher at the programmed position than the background incorporation at phenylalanine codons, showing high specificity of analogue incorporation. Protein expression yields of 8-12 mg/L of culture, corresponding to about two thirds of the expression level of the wild-type DHFR protein, are sufficient to provide fluorinated proteins suitable for 19F-NMR spectroscopy and other sample-intensive methods. The use of a nonessential "21st" tRNA/synthetase pair will permit incorporation of a wide range of analogues, once the synthetase specificity has been modified accordingly.  相似文献   

8.
In vivo incorporation of phenylalanine (Phe) analogues into an artificial extracellular matrix protein (aECM-CS5-ELF) was accomplished using a bacterial expression host that harbors the mutant phenylalanyl-tRNA synthetase (PheRS) with an enlarged binding pocket. Although the Ala294Gly/Thr251Gly mutant PheRS (PheRS**) under the control of T5 promoter allows incorporation of some Phe analogues into a protein, the T5 system is not suitable for material science studies because the amount of materials produced is not sufficient due to the moderate strength of the T5 promoter. This limitation can be overcome by using a pair of T7 promoter and T7 RNA polymerase instead. In the T7 expression system, it is difficult, however, to achieve a high incorporation level of Phe analogues, due to competition of Phe analogues for incorporation with the residual Phe that is required for synthesis of active T7 RNA polymerase. In this study, we prepared the PheRS** under T7 promoter and optimized culture condition to improve both the incorporation level of recombinant aECM protein and the incorporation level of Phe analogues. Incorporation and expression levels tend to increase in the case of p-azidophenylalanine, p-iodophenylalanine, and p-acetylphenylalanine. We evaluated the lower critical transition temperature, which is dependent on the incorporation ratio and the turbidity decreased when the incorporation level increased. Circular dichromism measurement indicated that this tendency is based on conformational change from random coil to β-turn structure. We demonstrated that polyethylene glycol (PEG) can be conjugated at reaction site of Phe analogues incorporated. We also demonstrated that the increased hydrophilicity of elastin-like sequences in the aECM-CS5-ELF made by PEG conjugation could suppress nonspecific adhesion of human umbilical vein endothelial cells (HUVEC).  相似文献   

9.
Periodate-oxidized tRNA(Phe) (tRNA(oxPhe)) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the alpha 2 beta 2 enzyme with tRNA(oxPhe) results in the loss of tRNAPhe aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[14C]tRNA(oxPhe) covalent complex indicates that the large (alpha, Mr 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA(oxPhe). The [14C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the alpha subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].  相似文献   

10.
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.  相似文献   

11.
Human phenylalanyl-tRNA synthetase (PheRS) was cloned and expressed in Escherichia coli. The cDNAs of the alpha and beta subunits were cloned into pET-21b(+) and pET-28b(+) vectors. The 6x histidine-tagged (HT) plasmids pET-21_HTbeta, pET-28_HTalpha, and pET-28_HTbeta were constructed. Three different types of (alphabeta)(2) heterodimers of human PheRS carrying HT at the N-terminus of either of two alpha or beta subunits or simultaneously on both of them were overproduced and purified. The heterodimeric protein with HT appended to the N-terminus of the beta subunit revealed no activity in the aminoacylation reaction as opposed to those with HT on the alpha subunit. It is known from the structure of the Thermus thermophilus Phe system that the N-terminal coiled-coil domain of the alpha subunit is involved in the binding of cognate tRNA(Phe). Our data demonstrate that a histidine-tagged N-terminal extension appended to the alpha subunit does not affect the kinetic parameters of tRNA(Phe) aminoacylation. Elimination of the HT from the alpha subunit by thrombin cleavage leads to nonspecific splitting of the enzyme that occurs in parallel to the main reaction. In addition to the tagged proteins the properly assembled heterodimer containing intact alpha and beta subunits free of HT was overproduced and purified. Aminoacylation activity of the overproduced human PheRS in the crude bacterial extract is two orders of magnitude higher than the corresponding activity in human placenta and the yield of the recombinant enzyme overproduced in E. coli is five times higher.  相似文献   

12.
The functional roles of phenylalanine and ATP in productive binding of the tRNA(Phe) acceptor end have been studied by photoaffinity labeling (cross-linking) of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with tRNA(Phe) analogs containing the s(4)U residue in different positions of the 3'-terminal single-stranded sequence. Human and E. coli tRNA(Phe)s used as basic structures differ by efficiency of the binding and aminoacylation with the enzyme under study. Destabilization of the complex with human tRNA(Phe) caused by replacement of three recognition elements decreases selectivity of labeling of the alpha- and beta-subunits responsible for the binding of adjacent nucleotides of the CCA-end. Phenylalanine affects the positioning of the base and ribose moieties of the 76th nucleotide, and the recorded effects do not depend on structural differences between bacterial and eukaryotic tRNA(Phe)s. Both in the absence and presence of phenylalanine, ATP more effectively inhibits the PheRS labeling with the s(4)U76-substituted analog of human tRNA(Phe) (tRNA(Phe)-s(4)U76) than with E. coli tRNA(Phe)-s(4)U76: in the first case the labeling of the alpha-subunits is inhibited more effectively; the labeling of the beta-subunits is inhibited in the first case and increased in the second case. The findings analyzed with respect to available structural data on the enzyme complexes with individual substrates suggest that the binding of phenylalanine induces a local rearrangement in the active site and directly controls positioning of the tRNA(Phe) 3'-terminal nucleotide. The effect of ATP on the acceptor end positioning is caused by global structural changes in the complex, which modulate the conformation of the acceptor arm. The rearrangement of the acceptor end induced by small substrates results in reorientation of the 3'-OH-group of the terminal ribose from the catalytic subunit onto the noncatalytic one, and this may explain the unusual stereospecificity of aminoacylation in this system.  相似文献   

13.
Monomeric human mitochondrial phenylalanyl-tRNA synthetase (PheRS), or hmPheRS, is the smallest known enzyme exhibiting aminoacylation activity. HmPheRS consists of only two structural domains and differs markedly from heterodimeric eukaryotic cytosolic and bacterial analogs both in the domain organization and in the mode of tRNA binding. Here, we describe the first crystal structure of mitochondrial aminoacyl-tRNA synthetase (aaRS) complexed with tRNA at a resolution of 3.0 Å. Unlike bacterial PheRSs, the hmPheRS recognizes C74, the G1–C72 base pair, and the “discriminator” base A73, proposed to contribute to tRNAPhe identity in the yeast mitochondrial enzyme. An interaction of the tRNA acceptor stem with the signature motif 2 residues of hmPheRS is of critical importance for the stabilization of the CCA-extended conformation and its correct placement in the synthetic site of the enzyme. The crystal structure of hmPheRS–tRNAPhe provides direct evidence that the formation of the complex with tRNA requires a significant rearrangement of the anticodon-binding domain from the “closed” to the productive “open” state. Global repositioning of the domain is tRNA modulated and governed by long-range electrostatic interactions.  相似文献   

14.
Roy H  Ling J  Irnov M  Ibba M 《The EMBO journal》2004,23(23):4639-4648
Translation of the genetic code requires attachment of tRNAs to their cognate amino acids. Errors during amino-acid activation and tRNA esterification are corrected by aminoacyl-tRNA synthetase-catalyzed editing reactions, as extensively described for aliphatic amino acids. The contribution of editing to aromatic amino-acid discrimination is less well understood. We show that phenylalanyl-tRNA synthetase misactivates tyrosine and that it subsequently corrects such errors through hydrolysis of tyrosyl-adenylate and Tyr-tRNA(Phe). Structural modeling combined with an in vivo genetic screen identified the editing site in the B3/B4 domain of the beta subunit, 40 angstroms from the active site in the alpha subunit. Replacements of residues within the editing site had no effect on Phe-tRNA(Phe) synthesis, but abolished hydrolysis of Tyr-tRNA(Phe) in vitro. Expression of the corresponding mutants in Escherichia coli significantly slowed growth, and changed the activity of a recoded beta-galactosidase variant by misincorporating tyrosine in place of phenylalanine. This loss in aromatic amino-acid discrimination in vivo revealed that editing by phenylalanyl-tRNA synthetase is essential for faithful translation of the genetic code.  相似文献   

15.
Pyrrolysyl-tRNA synthetase (PylRS) is a class IIc aminoacyl-tRNA synthetase that is related to phenylalanyl-tRNA synthetase (PheRS). Genetic selection provided PylRS variants with a broad range of specificity for diverse non-canonical amino acids (ncAAs). One variant is a specific phenylalanine-incorporating enzyme. Structural models of the PylRSamino acid complex show that the small pocket size and π-interaction play an important role in specific recognition of Phe and the engineered PylRS active site resembles that of Escherichia coli PheRS.  相似文献   

16.
C Güntner  E Holler 《Biochemistry》1979,18(10):2028-2038
The interaction between Phe-tRNA(Phe) or other acyl-tRNA derivatives thereof and phenylalanyl-tRNA synthetase of Escherichia coli K 10 has been investigated by nonequilibrium dialysis, by fluorescence titration in the presence of 2-p-toluidinylnaphthalene-6-sulfonate, by the kinetics of the aminoacylation of tRNA(Phe), and by the kinetics of the catalytic hydrolysis of Phe-tRNA(Phe). Phe-tRNA(Phe), or derivatives thereof, forms two types of complexes with the synthetase. One type involves the attachment of the phenylalanyl moiety to the phenylalanine-specific site of the enzyme, and the other type, to the tRNA(Phe)-specific binding site. They resemble alternative modes of a destabilized enzyme-product complex and are predicted on the basis of thermodynamic considerations. The two modes of binding of acyl-tRNA compete with each other. The attachment of Phe-tRNA(Phe) to the phenylalanine-specific site dominates. At equilibrium, this complex is present at a fourfold higher concentration than the other type of complex. The HNO2 deaminated Phe-tRNA(Phe) binds exclusively to the site specific for L-phenylalanine. On the contrary, Ile-tRNA(Phe) adds at 94.1% to the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) with this site leads to enzymatic hydrolysis into L-phenylalanine and tRNA(Phe). The complex involving the phenylalanine-specific site is hydrolytically unproductive. L-Phenylalanine acts as an activator of the hydrolysis by occupying the amino acid specific site and by shifting the equilibrium between the complexes toward the binding ot Phe-tRNA(Phe) at the tRNA(Phe)-specific site. The association of Phe-tRNA(Phe) at the phenylalanine-specific site does not interfere sterically with the binding of free tRNA(Phe). The sequential addition of free and aminoacylated tRNA(Phe) exhibits negative cooperativity. Such a mechanism could help to expel the product from the enzyme.  相似文献   

17.
Gaillard C  Bedouelle H 《Biochemistry》2001,40(24):7192-7199
Tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus comprises three sequential domains: an N-terminal catalytic domain, an alpha-helical domain with unknown function, and a C-terminal tRNA binding domain (residues 320-419). The properties of the polypeptide segment that links the alpha-helical and C-terminal domains, were analyzed by measuring the effects of sequence changes on the aminoacylation of tRNA(Tyr) with tyrosine. Mutations F323A (Phe323 into Ala), S324A, and G325A showed that the side chain of Phe323 was essential but not those of Ser324 and Gly325. Insertions of Gly residues between Leu322 and Phe323 and the point mutation L322P showed that the position and precise orientation of Phe323 relative to the alpha-helical domain were important. Insertions of Gly residues between Gly325 and Asp326 and deletion of residues 330-339 showed that the length and flexibility of the sequence downstream from Gly325 were unimportant but that this sequence could not be deleted. Mutations F323A, -L, -Y, and -W showed that the essential property of Phe323 was its aromaticity. The Phe323 side chain contributed to the stability of the initial complex between TyrRS and tRNA(Tyr) for 2.0 +/- 0.2 kcal x mol(-1) and to the stability of their transition state complex for 4.2 +/- 0.1 kcal x mol(-1), even though it is located far from the catalytic site. The results indicate that the disorder of the C-terminal domain in the crystals of TyrRS is due to the flexibility of the peptide that links it to the helical domain. They identified Phe323 as an essential residue for the recognition of tRNA(Tyr).  相似文献   

18.
A mutation in the pheS gene, encoding phenylalanyl-tRNA synthetase, in E. coli NP37 confers temperature-sensitivity on the organism. A five-fold increase in tRNA(phe) levels complements the mutation. Analysis of the kinetic properties of the mutant enzyme indicates that the KM is 20-fold higher than the wild-type and the dissociation constant of the tRNA(phe)-synthetase complex for the mutant is at least 10-fold higher. These results indicate that the mutation in E. coli NP37 directly affects the tRNA(phe) binding site on the cognate synthetase.  相似文献   

19.
N-Methylcyclopeptides like cyclosporins and enniatins are synthesized by multifunctional enzymes representing hybrid systems of peptide synthetases and S-adenosyl-l-methionine (AdoMet)-dependent N-methyltransferases. The latter constitute a new family of N-methyltransferases sharing high homology within procaryotes and eucaryotes. Here we describe the mutational analysis of the N-methyltransferase domain of enniatin synthetase from Fusarium scirpi to gain insight into the assembly of the AdoMet-binding site. The role of four conserved motifs (I, (2085)VLEIGTGSGMIL; II/Y, (2105)SYVGLDPS; IV, (2152)DLVVFNSVVQYFTPPEYL; and V, (2194)ATNGHFLAARA) in cofactor binding as measured by photolabeling was studied. Deletion of the first 21 N-terminal amino acid residues of the N-methyltransferase domain did not affect AdoMet binding. Further shortening close to motif I resulted in loss of binding activity. Truncation of 38 amino acids from the C terminus and also internal deletions containing motif V led to complete loss of AdoMet-binding activity. Point mutations converting the conserved Tyr(223) (corresponding to position 2106 in enniatin synthetase) in motif II/Y (close to motif I) into Val, Ala, and Ser, respectively, strongly diminished AdoMet binding, whereas conversion of this residue to Phe restored AdoMet-binding activity to approximately 70%, indicating that Tyr(223) is important for AdoMet binding and that the aromatic Tyr(223) may be crucial for AdoMet binding in N-methylpeptide synthetases.  相似文献   

20.
The effect of replacement of tRNA(Phe) recognition elements on positioning of the 3'-terminal nucleotide in the complex with phenylalanyl-tRNA synthetase (PheRS) from T. thermophilus in the absence or presence of phenylalanine and/or ATP has been studied by photoaffinity labeling with s(4)U76-substituted analogs of wild type and mutant tRNA(Phe). The double mutation G34C/A35U shows the strongest disorientation in the absence of low-molecular-weight substrates and sharply decreases the protein labeling, which suggests an initiating role of the anticodon in generation of contacts responsible for the acceptor end positioning. Efficiency of photo-crosslinking with the alpha- and beta-subunits in the presence of individual substrates is more sensitive to nucleotide replacements in the anticodon (G34 by A or A36 by C) than to changes in the general structure of tRNA(Phe) (as a result of replacement of the tertiary pair G19-C56 by U19-G56 or of U20 by A). The degree of disorders in the 3'-terminal nucleotide positioning in the presence of both substrates correlates with decrease in the turnover number of aminoacylation due to corresponding mutations. The findings suggest that specific interactions of the enzyme with the anticodon mainly promote the establishment (controlled by phenylalanine) of contacts responsible for binding of the CCA-end and terminal nucleotide in the productive complex, and the general conformation of tRNA(Phe) determines, first of all, the acceptor stem positioning (controlled by ATP). The main recognition elements of tRNA(Phe), which optimize its initial binding with PheRS, are also involved in generation of the catalytically active complex providing functional conformation of the acceptor arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号