首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Na(+)/H(+) antiporters   总被引:10,自引:0,他引:10  
  相似文献   

3.
4.
During early myocardial ischemia, the myocytes are loaded with Na(+), which in turn leads to Ca(2+) overload and cell death. The pathway of the Na(+) influx has not been fully elucidated. The aim of the study was to quantify the Na(+) inward current through sarcolemmal KATP channels (IKATP,Na) in anoxic isolated cardiomyocytes at the actual reversal potential (Vrev) and to estimate the contribution of this current to the Na(+) influx in the ischemic myocardium. IKATP,Na was determined in excised single channel patches of mouse ventricular myocytes and macropatches of Xenopus laevis oocytes expressing SUR2A/Kir6.2 channels. In the presence of K+ ions, the respective permeability ratios for Na(+) to K(+) ions, PNa/PK, were close to 0.01. Only in the presence of Na(+) ions on both sides of the membrane was IKATP,Na similarly large to that calculated from the permeability ratio PNa/PK, indicative of a Na(+) influx that is largely independent of the K+ efflux at Vrev. With the use of a peak KATP channel conductance in anoxic cardiomyocytes of 410 nS, model simulations for a myocyte within the ischemic myocardium showed that the amplitude of the Na(+) influx and K(+) efflux is even larger than the respective fluxes by the Na(+) - K(+) pump and all other background fluxes. These results suggest that during early ischemia the Na(+) influx through KATP channels essentially contributes to the total Na+ influx and that it also balances the K(+) efflux through KATP channels.  相似文献   

5.
Choline chloride, 100 mM, stimulates Na+/K(+)-ATPase activity of a purified dog kidney enzyme preparation when Na+ is suboptimal (9 mM Na+ and 10 mM K+) and inhibits when K+ is suboptimal (90 mM Na+ and 1 mM K+), but has a negligible effect at optimal concentrations of both (90 mM Na+ and 10 mM K+). Stimulation occurs at low Na+ to K+ ratios, but not at those same ratios when the actual Na+ concentration is high (90 mM). Stimulation decreases or disappears when incubation pH or temperature is increased or when Li+ is substituted for K+ or Rb+. Choline+ also reduces the Km for MgATP at the low ratio of Na+ to K+ but not at the optimal ratio. In the absence of K+, however, choline+ does not stimulate at low Na+ concentrations: either in the Na(+)-ATPase reaction or in the E1 to E2P conformational transition. Together, these observations indicate that choline+ accelerates the rate-limiting step in the Na+/K(+)-ATPase reaction cycle, K(+)-deocclusion; consequently, optimal Na+ concentrations reflect Na+ accelerating that step also. Thus, the observed K0.5 for Na+ includes high-affinity activation of enzyme phosphorylation and low-affinity acceleration of K(+)-deocclusion. Inhibition of Na+/K(+)-ATPase and K(+)-nitrophenylphosphatase reactions by choline+ increases as the K(+)-concentration is decreased; the competition between choline+ and K+ may represent a similar antagonism between conformations selected by choline+ and by K+.  相似文献   

6.
The whole-cell voltage-clamp technique was used in rat cardiac myocytes to investigate the kinetics of ADP binding to phosphorylated states of Na,K-ATPase and its effects on presteady-state Na(+)-dependent charge movements by this enzyme. Ouabain-sensitive transient currents generated by Na,K-ATPase functioning in electroneutral Na(+)-Na(+) exchange mode were measured at 23 degrees C with pipette ADP concentrations ([ADP]) of up to 4.3 mM and extracellular Na(+) concentrations ([Na](o)) between 36 and 145 mM at membrane potentials (V(M)) from -160 to +80 mV. Analysis of charge-V(M) curves showed that the midpoint potential of charge distribution was shifted toward more positive V(M) both by increasing [ADP] at constant Na(+)(o) and by increasing [Na](o) at constant ADP. The total quantity of mobile charge, on the other hand, was found to be independent of changes in [ADP] or [Na](o). The presence of ADP increased the apparent rate constant for current relaxation at hyperpolarizing V(M) but decreased it at depolarizing V(M) as compared to control (no added ADP), an indication that ADP binding facilitates backward reaction steps during Na(+)-Na(+) exchange while slowing forward reactions. Data analysis using a pseudo three-state model yielded an apparent K(d) of approximately 6 mM for ADP binding to and release from the Na,K-ATPase phosphoenzyme; a value of 130 s(-1) for k(2), a rate constant that groups Na(+) deocclusion/release and the enzyme conformational transition E(1) approximately P --> E(2)-P; a value of 162 s(-1)M(-1) for k(-2), a lumped second-order V(M)-independent rate constant describing the reverse reactions; and a Hill coefficient of approximately 1 for Na(+)(o) binding to E(2)-P. The results are consistent with electroneutral release of ADP before Na(+) is deoccluded and released through an ion well. The same approach can be used to study additional charge-moving reactions and associated electrically silent steps of the Na,K-pump and other transporters.  相似文献   

7.
The kinetics of Na(+)-dependent partial reactions of the Na+,K(+)-ATPase from rabbit kidney were investigated via the stopped-flow technique, using the fluorescent labels N-(4-sulfobutyl)-4-(4-(p-(dipentylamino)phenyl)butadienyl)py ridinium inner salt (RH421) and 5-iodoacetamidofluorescein (5-IAF). When covalently labeled 5-IAF enzyme is mixed with ATP, the two labels give almost identical kinetic responses. Under the chosen experimental conditions two exponential time functions are necessary to fit the data. The dominant fast phase, 1/tau 1 approximately 155 s-1 for 5-IAF-labeled enzyme and 1/tau 1 approximately 200 s-1 for native enzyme (saturating [ATP] and [Na+], pH 7.4 and 24 degrees C), is attributed to phosphorylation of the enzyme and a subsequent conformational change (E1ATP(Na+)3-->E2P(Na+)3 + ADP). The smaller amplitude slow phase, 1/tau 2 = 30-45 s-1, is attributed to the relaxation of the dephosphorylation/rephosphorylation equilibrium in the absence of K+ ions (E2P<==>E2). The Na+ concentration dependence of 1/tau 1 showed half-saturation at a Na+ concentration of 6-8 mM, with positive cooperatively involved in the occupation of the Na+ binding sites. The apparent dissociation constant of the high-affinity ATP-binding site determined from the ATP concentration dependence of 1/tau 1 was 8.0 (+/- 0.7) microM. It was found that P3-1-(2-nitrophenyl)ethyl ATP, tripropylammonium salt (NPE-caged ATP), at concentrations in the hundreds of micromolar range, significantly decreases the value of 1/tau 1, observed. This, as well as the biexponential nature of the kinetic traces, can account for previously reported discrepancies in the rates of the reactions investigated.  相似文献   

8.
9.
Tetrodotoxin-resistant (TTX-R) Na(+) channels are 1,000-fold less sensitive to TTX than TTX-sensitive (TTX-S) Na(+) channels. On the other hand, TTX-R channels are much more susceptible to external Cd(2+) block than TTX-S channels. A cysteine (or serine) residue situated just next to the aspartate residue of the presumable selectivity filter "DEKA" ring of the TTX-R channel has been identified as the key ligand determining the binding affinity of both TTX and Cd(2+). In this study we demonstrate that the binding affinity of Cd(2+) to the TTX-R channels in neurons from dorsal root ganglia has little intrinsic voltage dependence, but is significantly influenced by the direction of Na(+) current flow. In the presence of inward Na(+) current, the apparent dissociation constant of Cd(2+) ( approximately 200 microM) is approximately 9 times smaller than that in the presence of outward Na(+) current. The Na(+) flow-dependent binding affinity change of Cd(2+) block is true no matter whether the direction of Na(+) current is secured by asymmetrical chemical gradient (e.g., 150 mM Na(+) vs. 150 mM Cs(+) on different sides of the membrane, 0 mV) or by asymmetrical electrical gradient (e.g., 150 mM Na(+) on both sides of the membrane, -20 mV vs. 20 mV). These findings suggest that Cd(2+) is a pore blocker of TTX-R channels with its binding site located in a multiion, single-file region near the external pore mouth. Quantitative analysis of the flow dependence with the flux-coupling equation reveals that at least two Na(+) ions coexist with the blocking Cd(2+) ion in this pore region in the presence of 150 mM ambient Na(+). Thus, the selectivity filter of the TTX-R Na(+) channels in dorsal root ganglion neurons might be located in or close to a multiion single-file pore segment connected externally to a wide vestibule, a molecular feature probably shared by other voltage-gated cationic channels, such as some Ca(2+) and K(+) channels.  相似文献   

10.
The Na(+),K(+)-ATPase catalyzes the active transport of ions. It has two necessary subunits, alpha and beta, but in kidney it is also associated with a 7.4-kDa protein, the gamma subunit. Stable transfection was used to determine the effect of gamma on Na, K-ATPase properties. When isolated from either kidney or transfected cells, alphabetagamma had lower affinities for both Na(+) and K(+) than alphabeta. A post-translational modification of gamma selectively eliminated the effect on Na(+) affinity, suggesting three configurations (alphabeta, alphabetagamma, and alphabetagamma*) conferring different stable properties to Na, K-ATPase. In the nephron, segment-specific differences in Na(+) affinity have been reported that cannot be explained by the known alpha and beta subunit isoforms of Na,K-ATPase. Immunofluorescence was used to detect gamma in rat renal cortex. Cortical ascending limb and some cortical collecting tubules lacked gamma, correlating with higher Na(+) affinities in those segments reported in the literature. Selective expression in different segments of the nephron is consistent with a modulatory role for the gamma subunit in renal physiology.  相似文献   

11.
12.
Na(+)/K(+)-ATPase (sodium/potassium pump) is a P-type ion-motive ATPase found in the plasma membranes of animal cels. In vertebrates, the functions of this enzyme in nerves, heart and kidney are well characterized and characteristics a defined by different isoforms. In contrast, despite different tissue distributions, insects possess a single isoform of the alpha-subunit. A comparison of insect and vertebrate Na(+)/K(+)-ATPases reveals that although the mode of action and structure are very highly conserved, the specific roles of the enzyme in most tissues varies. However, the enzyme is essential for the function of nerve cells, and in this respect Na(+)/K(+)-ATPase appears to be fundamental in metazoan evolution.  相似文献   

13.
14.
15.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

16.
17.
Bacterial flagellar motors are molecular machines powered by the electrochemical potential gradient of specific ions across the membrane. Bacteria move using rotating helical flagellar filaments. The flagellar motor is located at the base of the filament and is buried in the cytoplasmic membrane. Flagellar motors are classified into two types according to the coupling ion: namely the H(+)-driven motor and the Na(+)-driven motor. Analysis of the flagellar motor at the molecular level is far more advanced in the H(+)-driven motor than in the Na(+)-driven motor. Recently, the genes of the Na(+)-driven motor have been cloned from a marine bacterium of Vibrio sp. and some of the motor proteins have been purified and characterized. In this review, we summarize recent studies of the Na(+)-driven flagellar motor.  相似文献   

18.
Kawai F  Horiguchi M  Suzuki H  Miyachi E 《Neuron》2001,30(2):451-458
Mammalian photoreceptors are hyperpolarized by a light stimulus and are commonly thought to be nonspiking neurons. We used the whole-cell patch-clamp technique on surgically excised human retina to examine whether human photoreceptors can elicit action potentials. We discovered that human rod photoreceptors express voltage-gated Na(+) channels, and generate Na(+) action potentials, in response to membrane depolarization from membrane potentials of -60 or -70 mV. Na(+) spikes in human rods were elicited at the termination of a light response that hyperpolarized the potential well below -50 mV. This served to amplify the release of a neurotransmitter when a bright light is turned off, and thus selectively amplify the off response to the light signal.  相似文献   

19.
Apical membrane H+ extrusion in the renal outer medullary collecting duct, inner stripe, is mediated by a Na(+)-independent H+ pump. To examine the regulation of this transporter, cell pH and cell Ca2+ were measured microfluorometrically in in vitro perfused tubules using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2, respectively. Apical membrane H+ pump activity, assayed as cell pH recovery from a series of acid loads (NH3/NH+4 prepulse) in the total absence of ambient Na+, initially occurred at a slow rate (0.06 +/- 0.02 pH units/min), which was not sufficient to account for physiologic rates of H+ extrusion. Over 15-20 min after the initial acid load, the rate of Na(+)-independent cell pH recovery increased to 0.63 +/- 0.09 pH units/min, associated with a steady-state cell pH greater than the initial pre-acid load cell pH. This pattern suggested an initial suppression followed by a delayed activation of the apical membrane H+ pump. Replacement of peritubular Na+ with choline or N-methyl-D-glucosamine resulted in an initial spike increase in cell Ca2+ followed by a sustained increase in cell Ca2+. The initial rate of Na(+)-independent cell pH recovery could be increased by elimination of the Na+ removal-induced sustained cell Ca2+ elevation by: (a) performing studies in the presence of 135 mM peritubular Na+ (1 mM peritubular amiloride used to inhibit basolateral membrane Na+/H+ antiport); (b) clamping cell Ca2+ low with dimethyl-BAPTA, an intracellular Ca2+ chelating agent; or (c) removal of extracellular Ca2+. Cell acidification induced a spike increase in cell Ca2+. The late acceleration of Na(+)-independent cell pH recovery was independent of Na+ removal and of the method used to acidify the cell, but was eliminated by prevention of the cell Ca2+ spike and markedly delayed by the microfilament-disrupting agent, cytochalasin B. This study demonstrates that peritubular Na+ removal results in a sustained elevation in cell Ca2+, which inhibits the apical membrane H+ pump. In addition, rapid cell acidification associated with a spike increase in cell Ca2+ leads to a delayed activation of the H+ pump. Thus, cell Ca2+ per se, or a Ca(2+)-activated pathway, can modulate H+ pump activity.  相似文献   

20.
The effects of K(+), Na(+) ions and their mixture on the conformational transition and macroscopic gel properties of kappa-Carrageenan system have been studied using different experimental techniques. The macroscopic gelation properties of kappa-Carrageenan were found to be dependent upon cosolute type. Indeed, a more ordered and strong gel was obtained in the presence of K(+) with respect to Na(+) ions. The gel properties obtained using mixtures of two cosolutes are shown to depend on the [K(+)]/[Na(+)] ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号