首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of different organic fraction of municipal solid wastes during anaerobic thermophilic (55 degrees C) treatment of organic matter was studied in this work: food waste (FW), organic fraction of municipal solid waste (OFMSW) and shredded OFMSW (SH_OFMSW). All digester operated at dry conditions (20% total solids content) and were inoculated with 30% (in volume) of mesophilic digested sludge. Experimental results showed important different behaviours patterns in these wastes related with the organic matter biodegradation and biogas and methane production. The FW reactor showed the smallest waste biodegradation (32.4% VS removal) with high methane production (0.18 LCH4/gVS); in contrast the SH_OFMSW showed higher waste biodegradation (73.7% VS removal) with small methane production (0.05 LCH4/g VS). Finally, OFMSW showed the highest VS removal (79.5%) and the methane yield reached 0.08 LCH4/g VS. Therefore, the nature of organic substrate has an important influence on the biodegradation process and methane yield. Pre-treatment of waste is not necessary for OFMSW.  相似文献   

2.
A mathematical model that describes the operation of a sequential leach bed process for anaerobic digestion of organic fraction of municipal solid waste (MSW) is developed and validated. This model assumes that ultimate mineralisation of the organic component of the waste occurs in three steps, namely solubilisation of particulate matter, fermentation to volatile organic acids (modelled as acetic acid) along with liberation of carbon dioxide and hydrogen, and methanogenesis from acetate and hydrogen. The model incorporates the ionic equilibrium equations arising due to dissolution of carbon dioxide, generation of alkalinity from breakdown of solids and dissociation of acetic acid. Rather than a charge balance, a mass balance on the hydronium and hydroxide ions is used to calculate pH. The flow of liquid through the bed is modelled as occurring through two zones—a permeable zone with high flushing rates and the other more stagnant. Some of the kinetic parameters for the biological processes were obtained from batch MSW digestion experiments. The parameters for flow model were obtained from residence time distribution studies conducted using tritium as a tracer. The model was validated using data from leach bed digestion experiments in which a leachate volume equal to 10% of the fresh waste bed volume was sequenced. The model was then tested, without altering any kinetic or flow parameters, by varying volume of leachate that is sequenced between the beds. Simulations for sequencing/recirculating 5 and 30% of the bed volume are presented and compared with experimental results.  相似文献   

3.
The effect of inoculum source on anaerobic thermophilic digestion of separately collected organic fraction of municipal solid wastes (SC_OFMSW) has been studied. Performance of laboratory scale reactors (V: 1.1 L) were evaluated using six different inoculums sources: (1) corn silage (CS); (2) restaurant waste digested mixed with rice hulls (RH_OFMSW); (3) cattle excrement (CATTLE); (4) swine excrement (SWINE); (5) digested sludge (SLUDGE); and (6) SWINE mixed with SLUDGE (1:1) (SWINE/SLUDGE). The SC_OFMSW was separately and collected from university restaurant. The selected conditions were: 25% of inoculum, 30% of total solid and 55 degrees C of temperature, optimum in the thermophilic range. The six inoculum sources showed an initial start-up phase in the range between 2 and 4 days and the initial methane generation began over 10 days operational process. Results indicated that SLUDGE is the best inoculum source for anaerobic thermophilic digestion of the treatment of organic fraction of municipal solid waste at dry conditions (30%TS). Over 60 days operating period, it was confirmed that SLUDGE reactor can achieve 44.0%COD removal efficiency and 43.0%VS removal. In stabilization phase, SLUDGE reactor showed higher volumetric biogas generated of 78.9 mL/day (or 35.6 mLCH(4)/day) reaching a methane yield of 0.53 LCH(4)/gVS. Also, SWINE/SLUDGE and SWINE were good inoculums at these experimental conditions.  相似文献   

4.
The paper concerns the results of a pilot-scale study of the simulation of the start-up phase of the thermophilic semi-dry anaerobic digestion of the organic fraction of municipal solid wastes. The aim of the study was to aid and shorten the start-up phase of the full-scale plant (500 t/d) in Verona--Ca' del Bue, where the semi-dry anaerobic digestion process is being used. The substrate used in the experimentation was the mechanically sorted organic fraction of municipal solid waste (MS-OFMSW) enriched with the putrescent fraction from the source sorted OFMSW in order to simulate the substrate which is dealt with in the Verona plant. The results of the pilot scale study agreed with literature data and previous work of the authors: it showed a specific gas production of 0.23 m3/kg TVSfeed and a gas production rate of 2.1 m3/m3 d when operating at a specific organic loading rate of 0.135 kgTVSfeed/kgTVSreacter d. No problems regarding process stability were encountered in the gradual acclimation of the biomass. The design organic loading rate of 9 kg TVSfeed/m3reactor d was reached in about 30 days, during which the total solids content in the feedwas increased. Only a partial comparison with the full scale start-up, which is now in progress, is possible: this shows an initial general concordance with the results found in previous work.  相似文献   

5.
The influence of total solid contents during anaerobic mesophilic treatment of the organic fraction of municipal solid waste (MSW) has been studied in this work. The work was performed in batch reactors of 1.7L capacity, during a period of 85-95 days. Two different organic substrate concentrations were studied: 931.1 mgDOC/L (20% TS) and 1423.4 mgDOC/L (30% TS). Experimental results showed that the reactor with 20% total solids content had significantly higher performance. Thus, the startup phase ended at 14 days and the total DOC removal was 67.53%. The startup in reactor R30 ended at 28 days obtaining 49.18% DOC removal. Also, the initial substrate concentration contributed substantially to the amount of methane in the biogas. Hence, the total methane production in the methanogenic phase was 7.01 L and 5.53 L at the end of the experiments for R20 and R30, respectively.  相似文献   

6.
《Biological Wastes》1990,31(3):199-210
The start-up of the dry anaerobic batch digestion by the BIOCEL-concept of the organic fraction of municipal solid waste (MSW) is unbalanced when a methanogenic inoculum (digested sewage sludge) is added to a total solids concentration of 35%. The unbalanced conditions are the result of the rapid degradation of easily-degradable compounds which are present in the organic fraction. Enhancement of the first start-up of the dry batch digestion was tried by applying an aerobic partial-composting step. By this aerobic treatment the easily degradable compounds are removed. After the composting step the anaerobic digestion will be limited by the conversion of the ligno-cellulose part of the organic fraction. It appeared that at least 19·5% of the volatile solids (VS) should be converted during the aerobic composting period before acid formation in the digestion was in balance with the methane formation. This amount of aerobically degraded VS means a 40% loss of potential biogas. The loss of a part of the biogas is a major drawback to the partial composting as a method for enhancing the start-up of the dry anaerobic digestion. A shorter composting period which is combined with another start-up method might be a feasible method to decrease the energy input of the dry digestion process.  相似文献   

7.
Abstract

This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process.  相似文献   

8.
Biomass waste, including municipal solid waste (MSW), contains lignocellulosic-containing fiber components that are not readily available as substrates for anaerobic digestion due to the physical shielding of cellulose imparted by the nondigestible lignin. Consequently, a substantial portion of the potentially available carbon is not converted to methane and the incompletely digested residues from anaerobic digestion generally require additional processing prior to their return to the environment. We investigated and developed steam pressure disruption as a treatment step to render lignocellulosic-rich biomass more digestible and as a means for increasing methane energy recovery. The rapid depressurization after steam heating (240 degrees C, 5 min.) of the nondigested residues following a 30-day primary digestion of MSW caused a visible disruption of fibers and release of soluble organic components. The disrupted material, after reinoculation, provided a rapid burst in methane production at rates double those observed in the initial digestion. This secondary digestion proceeded without a lag phase in gas production, provided approximately 40% additional methane yields, and was accompanied by a approximately 40% increase in volatile solids reduction. The secondary digestate was found to be enriched in lignin and significantly depleted in cellulose and hemi-cellulose components when compared to primary digestate. Thus, steam pressure disruption treatment rendered lignocellulosic substrates readily accessible to anaerobic digestion bacteria and improved both the kinetics of biogas production and the overall methane yield from MSW. Steam pressure disruption is central to a new anaerobic digestion process approach including sequential digestion stages and integrated energy recovery, to improve process yields, provide cogenerated energy for process needs, and to provide effective reuse and recycling of waste biomass materials.  相似文献   

9.
The degradation of municipal solid waste (MSW) under mesophilic conditions can be enhanced by exchanging leachate between fresh waste and stabilised waste. The optimum point in time when leachate from an anaerobically digesting waste bed can be used to initiate degradation of another waste bed might occur when the leachate of the digesting waste bed is highly active with cellulolytic and methanogenic bacteria. In this study, the cellulolytic activity of the leachate was measured using the cellulose-azure assay. As products of hydrolysis are soluble compounds, the rate of generation of these compounds was estimated based on a soluble chemical oxygen demand (SCOD) balance around the fresh waste bed. It was found that once the readily soluble material present in MSW was washed out there was very little generation of SCOD without the production of methane, indicating that flushing leachate from a stabilised waste bed resulted in a balanced inoculation of the fresh waste bed. With the onset of sustained methanogenesis, the rate of SCOD generation equalled the SCOD released from the digester as methane. The experimental findings also showed that cellulolytic activities of the leachate samples closely followed the trend of SCOD generation.  相似文献   

10.
Mesophilic anaerobic digestion of slaughterhouse waste (SHW) and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been evaluated. These processes were carried out in a laboratory plant semi-continuously operated and two set-ups were run. The first set-up, with a hydraulic retention time (HRT) of 25 days and organic loading rate (OLR) of 1.70 kg VS m−3 day−1 for digestion, and 3.70 kg VS m−3 day−1 for co-digestion, was not successful. The second set-up was initiated with an HRT of 50 days and an OLR of 0.9 kg VS m−3 day−1 for digestion and 1.85 kg VS m−3 day−1 for co-digestion. Under these conditions, once the sludge had been acclimated to a medium with a high fat and ammonia content, it was possible to decrease the HRT while progressively increasing the OLR to the values used in the first set-up until an HRT of 25 days and OLRs of 1.70 and 3.70 kg VS m−3 day−1, for digestion and co-digestion, respectively (the same conditions of the digesters failures previously). These digesters showed a highly stable performance, volatile fatty acids (VFAs) were not detected and long chain fatty acids (LCFAs) were undetected or only trace levels were measured in the analyzed effluent. Fat removal reached values of up to 83%. Anaerobic digestion was thus found to be a suitable technology for efficiently treating lipid and protein waste.  相似文献   

11.
Summary Cellulolytic enzymes from a laboratory anaerobic digester fed municipal solid waste were examined with respect to pH and temperature. The pH optimum was pH 6.6, considerably lower than the pH range in which digesters are normally operated (pH 7.2–7.6). The optimum temperature was between 50 and 60°C, rather than the 35–37°C range in which most digesters are controlled.  相似文献   

12.
This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.  相似文献   

13.
Ağdağ ON 《Biodegradation》2011,22(5):931-938
This study investigated the effects of organic fraction of municipal solid waste (OFMSW) addition on the anaerobic treatment of the olive-mill pomace. Biodegradability of olive-mill pomace mixed with OFMSW was examined in anaerobic bioreactors. Only OFMSW was loaded in the first (control) bioreactor, while run 1 and run 2 bioreactors included different ratio of OFMSW and olive-mill pomace. COD, BOD5, NH4–N, pH, VFA, CH4 quantity and percentage in anaerobic bioreactors were regularly monitored. In addition, inert COD and anaerobic toxicity assay (ATA) were measured in leachate samples. The results of the study showed that 70% of OFMSW addition to olive-mill pomace has an advantage in terms of pollution parameters and methane generation. Since olive-mill pomace is not easy biodegradable, addition of high proportion of OFMSW promotes biodegradability of olive-mill pomace. Decreasing in BOD5/COD ratios in the run 1 and run 2 reactors carried out as 62 and 52%, respectively.  相似文献   

14.
15.
The kinetic model of biological oxidation of the organic fraction of municipal solid waste suspension is presented in this paper. The whole process of the aerobic biodegradation consists of three phases: the hydrolysis and intensive biodegradation phase, the limited biodegradation phase and the terminal phase. The first two phases play the most important role and the unstructured model is applied to successfully describe them. Kinetics of microbial decomposition of organic substances is described by the Monod equation. Also, a strong influence of temperature on the process kinetics is observed. The relation between a maximum specific growth rate and temperature is mathematically described.  相似文献   

16.
A rotating drum mesh filter bioreactor (RDMFBR) with a 100 μm mesh coupled to an anaerobic filter was used for the anaerobic digestion of biodegradable municipal solid waste (BMW). Duplicate systems were operated for 72 days at an organic loading rate (OLR) of 7.5 gVS l−1 d−1. Early in the experiment most of the methane was produced in the 2nd stage. This situation gradually reversed as methanogenesis became established in the 1st stage digester, which eventually produced 86–87% of the total system methane. The total methane production was 0.2 l g−1 VSadded with 60–62% volatile solids destruction. No fouling was experienced during the experiment at a transmembrane flux rate of 3.5 l m−2 h−1. The system proved to be robust and stably adjusted to a shock loading increase to 15 gVS l−1 d−1, although this reduced the overall methane production to 0.15 l g−1 VSadded.  相似文献   

17.
18.
A distributed model of solid waste digestion in a 1-D bioreactor with leachate recirculation and pH adjustment was developed to analyze the balance between the rates of polymer hydrolysis/acidogenesis and methanogenesis during the anaerobic digestion of municipal solid waste (MSW). The model was calibrated on previously published experimental data generated in 2-L reactors filled with shredded refuse and operated with leachate recirculation and neutralization. Based on model simulations, both waste degradation and methane production were stimulated when inhibition was prevented rapidly from the start, throughout the reactor volume, by leachate recirculation and neutralization. An optimal strategy to reduce the time needed for solid waste digestion is discussed.  相似文献   

19.
Volatile Fatty Acids (VFA) production by anaerobic fermentation of organic solid wastes was studied at laboratory scale. The influence of initial substrate concentration was evaluated on VFA production. Completely mixed reactors (0.9?l) were used at mesophilic temperature (35?°C). Food wastes had 43.8% Total Solids content. Three dilutions of substrate (1/25, 1/10 and 1/5) corresponding to 1.75%, 4.38% and 8.76% of Total Solids and five values of Organic Loading Rates: 2, 5, 10, 12.5 and 25?kg COD/m3?d were studied. It was found that substrate 1/10 led to 14?g VFA/l at a loading rate of 12.5?kg COD/m3?d and an hydraulic retention time of 3.7 d. The main VFA produced were especially acetate and butyrate. Substrate diluted 1/5 led to 26.1?g VFA/l at a loading of 5?kg COD/m3?d and an hydraulic retention time of 15.1 d, but biomass production was not optimal. In a second study, a cascade of three reactors was used. An effluent with 42?g VFA/l was obtained at steady-state conditions at a loading of 12.5?kg of COD/m3?d and an hydraulic retention time of 12.5?d. The distribution of VFA was the following: 36% of propionate, 34% of acetate and 22.5% of butyrate.  相似文献   

20.
The use of OFMSW for biogas and compost production is considered as a sustainable strategy in saving valuable landfill space while producing valuable product for soil application. This study examines the effects of anaerobic and aerobic post-treatment of OFMSW on the stability of anaerobic digestate and compost and soil quality using seed germination tests. Anaerobic digestion of OFMSW was carried out for fifteen days after which the residual anaerobic digestate was subjected to aerobic post-treatment for seventy days. Seed germination tests showed that fresh feedstock and digestates collected during anaerobic digestion and during the early stages of aerobic post-treatment were phytotoxic. However, phytotoxic effects were not observed in soils amended with the fully stabilised anaerobic digestate compost, ADC. It was also found that seed germination increases with dilution and incubation time, suggesting that lower soil application rates and longer lag periods between soil application of ADC and planting can reduce the amount of biodegradable organics in the ADC, thus enhancing the benefits of ADC as soil amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号