首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamic properties (storage moduli, G′ and loss moduli, G″) of tamarind gels and the influence of saccharose and polysaccharide concentrations were studied using model rings of 3 mm thickness and 20 mm diameter, prepared with three saccharose (55, 60 and 65% w/v) and three polysaccharide concentrations (1.5, 2.0 and 2.5% w/v). Small amplitude oscillatory measures were taken at 25°C in a PHYSICA LS 100 rheometer with parallel plate geometry. Results for the 9 gels showed the zone of linear viscoelasticity between 0.637 and 6.37 Pa of oscillatory shear stress. The mechanical spectra obtained after 24, 48 and 72 h evidenced the presence of syneresis with an increase in G′ as a function of time. The effects of polysaccharide concentrations on gel viscoelasticity were greater than those of saccharose.  相似文献   

2.
Effect of tea saponin on rumen fermentation in vitro   总被引:7,自引:0,他引:7  
The present study was conducted to investigate the effect of tea saponins (TS) on ruminal fermentation in vitro using gas syringes as incubators. The TS were added at levels of 0, 2, 4, 6 and 8 mg against 200 mg mixture of corn meal and grass meal (1/1, w/w) in rumen fluid. In vitro gas production (GP) was recorded and methane concentration was determined at 3, 6, 9, 12 and 24 h incubation. After 24 h, the incubation was stopped and the inoculants were determined for pH, ammonia-N, volatile fatty acids (VFAs), protozoa counts and microbial protein yield. The GP was increased with the increasing level of TS except 8 mg at 24 h, which kept little change from that of the control. Methane concentration was decreased at all levels of TS at each incubation time. At 24 h incubation, inclusion with 2, 4, 6 and 8 mg of TS decreased methane concentration by 13, 22, 25 and 26%, respectively. The pH of ruminal fluid was slightly lower at 4 and 6 mg TS, but all values were in the normal range. Ammonia-N concentrations decreased significantly (P < 0.01) when the TS were included. Concentrations of individual and total VFAs were not significantly effected by TS addition. The TS significantly inhibited the protozoa growth in ruminal fluid (P < 0.01). At 24 h incubation, protozoa counts were reduced by 19, 25, 45 and 79%, respectively at levels of 2, 4, 6 and 8 mg of TS compared to that in control. The microbial protein was enhanced with the TS addition except 2 mg level, and reached 1.92, 2.36 and 2.61 mg/mL with addition of 4, 6 and 8 mg TS, compared to 1.50 mg/mL in control. It is suggested that TS could modify the rumen fermentation and inhibit the release of methane and ammonia, which may be beneficial for improving nutrient utilization and animal growth.  相似文献   

3.
A study was conducted to evaluate the effects of supplementing with different tree leaves on nutrient digestion, rumen fermentation and blood parameters of sheep. Thirty adult Malpura rams (39.0 ± 0.56 kg) were divided into five groups of six each. They were grazed as a single flock on a semi-arid rangeland and after the end of routine grazing period (08:00–17:00 h), first group (G1), which was not provided with any supplementation, served as control group. Second group (G2) was supplemented with 200 g of a conventional concentrate mixture per head per day, whereas third, fourth and fifth groups (G3, G4 and G5) were supplemented with approximately 200 g dry matter (DM) per day freshly cut foliage from Ailanthes excelsa, Azardirachta indica and Bauhinia racemosa, respectively. Protein content (g kg−1 DM) in A. excelsa, A. indica and B. racemosa foliage was 197, 128 and 132, respectively. A. indica and B. racemosa foliages also contained 123.2 and 211.2 g kg−1 DM condensed tannin (CT) with protein precipitating capacity (PPC) of 16.5 and 46.5 g kg−1 DM. None of the tree leaves contained hydrolysable tannin (HT). Dry matter intake (DMI, g day−1) was 591, 766, 865, 974 and 939 in G1, G2, G3, G4 and G5, respectively. Digestible crude protein (DCP) and metabolisable energy (ME) intakes in supplemented groups G2–G5 were higher (P < 0.05) compared to control (G1). Supplementation improved digestibility of all nutrients in all groups. Rumen fermentation study indicated lower (P < 0.05) ammonia and total N in the rumen liquor collected from G5 sheep compared to the other supplemented groups. Although haemoglobin (Hb, g dl−1) levels showed small changes among groups, blood urea nitrogen (BUN, mg dl−1) was lowest in G5 compared to the other groups. Initial BW were similar among the groups. After 60 days of experimental feeding, all animals maintained their BW, except sheep in the control group (G1), which lost BW. Results indicate that for adult sheep grazing on a semi-arid range, supplementation with a concentrate mixture could be replaced by tree leaves like A. excelsa, A. indica and B. racemosa, during the lean season to maintain their BW. In addition, supplementing with tree leaves containing condensed tannin has advantages in terms of N utilization.  相似文献   

4.
As revealed by NMR spectroscopy (after ultrasonic degradation) and HPLC (after total hydrolysis) an arabinoxylan (AX) containing 74.8% Xylp and 23.2% Araf was isolated from Ispaghula (Plantago ovata) by soaking the seed husk with water, extraction with aqueous sodium hydroxide and coagulation with acetic acid. The AX with a molar mass of 364,470 g/mol shows high swelling ability in water. The carboxymethylation of AX was carried out heterogeneously with sodium monochloroacetate in the presence of aqueous sodium hydroxide. The reaction parameters were varied in terms of slurry medium, molar ratio, temperature, time, and sodium hydroxide concentration. For comparative studies, carboxymethylation of arabinan was carried out. In order to determine the total degree of substitution (DS) and mole fractions of the repeating units of carboxymethyl arabinoxylan (CMAX) and of carboxymethyl arabinan, HPLC and 1H NMR spectroscopic investigations after total hydrolysis were carried out. DS values for CMAX as high as 1.81 were achieved. CMAX is water soluble starting at DS of 0.33.  相似文献   

5.
Ruminal inoculum enriched with particle-associated microorganisms was collected from two lactating dairy cows fed an alfalfa hay/cereal silage/concentrate diet 1 h before feeding and used to evaluate effects of essential oils (EO) on ruminal fermentation in short-term in vitro incubations. Ruminal ammonia N was labeled with 15N and native and hydrolyzed casein were provided as sources of amino acids. Forty EO were tested at 10 and 100 mg/l final medium concentration. Monensin-Na, and sodium laurate were also incubated at 5 and 2000 mg/l, respectively. Compared with blanks (i.e., no addition of EO), sodium laurate increased medium pH and a number of EO reduced medium pH. Both sodium laurate and monensin reduced ammonia concentrations compared to the blank. Only one of the tested EO (i.e., Caraway) slightly reduced ammonia concentration, by 8%, compared with the blank. Monensin and sodium laurate resulted in higher (i.e., 9–34%, monensin, and 29–47%, sodium laurate) 15N enrichment of ammonia N, an indication of reduced deamination of amino acids in these treatments versus the blank. Several EO (i.e., FrankMyrrh, Gardenia, Hibiscus, Eucaliptus, and Peppermint) had similar effects, but of a smaller magnitude (i.e., 5–12%). Some EO increased medium total VFA concentration, primarily through an increase in acetate concentration. Overall, effects of EO on fermentation were subtle, and it is unlikely that these moderate in vitro effects would correspond to any substantive impact on ruminal fermentation in vivo.  相似文献   

6.
Tannins may reduce rumen degradability of protein, increase the proportion of feed protein reaching the lower digestive tract for enzymatic digestion and thereby increase the efficiency of protein utilization. The objective was to assess the effects of different types and levels of tannins on rumen in vitro gas production and its kinetics, in vitro true degradability (IVTD) and rumen degradability of protein (IVRDP), and microbial protein synthesis by incubating alfalfa (Medicago sativa L.) hay in buffered rumen fluid. Alfalfa was incubated in buffered rumen fluid with and without the addition of different levels of gallic acid (GA), quebracho tannin (QT), or tannic acid (TA). Tannins at the lower inclusion levels had minimal effects on fermentation products compared to the higher levels. Addition of QT and TA reduced ammonium-N (NH4+-N) concentration. Addition of QT at 20, 40, and 60 g/kg DM decreased NH4+-N by 2, 7, and 12% compared with control whereas addition of TA reduced NH4+-N by 5, 6, and 12% when added at 20, 40 and 60 g/kg DM, respectively. In experiment 2, addition of QT at 50, 100, and 150 g/kg DM, resulted in reduction of NH4+-N by 12, 30, and 51%, respectively, compared with the control. Addition of TA at 50, 100, and 150 g/kd DM reduced NH4+-N by 14, 26, and 47% compared with control. Inclusion of QT at 50, 100, 150 DM reduced IVRDP by 13, 30, and 36% compared with control whereas at these levels of inclusion, TA resulted in reduction of IVRDP by 14, 25, and 48%. Rate of gas production decreased (P<0.001), while asymptotic gas production increased (P<0.0001) with increasing level of GA and TA. Quebracho tannin decreased (P<0.0001) both the rate and asymptotic of gas production. Gallic acid had a positive effect on fermentation as indicated by increased gas production and total short chain fatty acids (SCFA) production. Quebracho tannin decreased 24 h gas production, IVTD, and total SCFA production. Acetate to propionate ratio increased with the addition of GA and but decreased when QT was added. Addition of tannins did not markedly increase total purines but numerical values tended to be higher in the presence of tannins compared with the control. Efficiency of microbial growth was lower in the presence of GA and unaltered by TA, but higher in the presence of QT compared with the control. The effect of tannins on rumen fermentation and protein degradation varied with type and level of tannins. In vivo studies will be conducted to validate the in vitro results.  相似文献   

7.
The present study was to evaluate effect of herbal feed additives on methane and total gas production during the rumen fermentation for environment and animal health concern. Different parts of the five medicinal plants were selected such as leaf and small stems of Ocimum sanctum (Tulsi), roots of Curcuma longa (Haldi), fruits of Emblica officinalis (Amla), leaves of Azadirachta indica (Neem) and leaves and small stem of Clerodendrum phlomidis (Arni) for our study. Addition of different herbal additive combinations did not influence IVDMD and total gas production however methane production (mg/g of substrate DM) was significantly (P<0.05) reduced in Amla: Neem and Neem: Arni combinations. Total nitrogen significantly (P<0.01) increased in the combinations of Tulsi: Haldi and Amla: Neem. TCA–ppt-N is significantly (P<0.01) increased in Tulsi: Haldi, Haldi: Amla, Amla: Neem and Neem: Arni however NH3-N (mg/dl) significantly decreased in all treatments. We conclude that the screening of plant combinations, Amla: Neem and Neem: Arni have potential to decrease methane production and our herbal feed supplements have no side-effects on the ruminant in small amount.  相似文献   

8.
The objective of this study was to evaluate effects of isobutyrate supplementation on rumen fermentation, lactation performance and plasma characteristics of dairy cows. Twenty multiparous second filial generation (F2) cows of a cross between Chinese Jinnan Yellow and Holstein cows at 148 ± 4.5 days in milk and 22.3 ± 0.81 kg milk production were used in a replicated 4 × 4 Latin square experiment. The treatments were: control (without isobutyrate), low (LIB), medium (MIB) and high (HIB) isobutyrate supplementation of 20, 40 and 60 g per cow per day, respectively. Experimental periods were 30 days with 15 d of adaptation and 15 d of data collection. Dry matter (DM) intake was not affected by increasing isobutyrate supplementation, but milk yields were highest for the 40 g/d isobutyrate supplementation level, where proportion of milk fat, true protein and lactose were minimized. Ruminal pH (6.38–6.24) and ammonia N (13.8–11.1 mg/100 ml) were linearly (P<0.01) decreased, whereas total VFA concentration (124–131 mM) increased at a decreasing rate with increasing isobutyrate supplementation. The ratio of acetate to propionate increased linearly (P<0.01) from 2.77 to 4.43 as isobutyrate supplementation increased due to the increase in acetate production and decrease in propionate production. Digestibilities of OM in the total tract increased linearly (P<0.01) as isobutyrate supplementation increased, digestibilities of DM and EE were highest for the 40 g/d isobutyrate supplementation level, digestibilities of CP, aNDF and ADF increased at a decreasing rate with increasing isobutyrate supplementation. Plasma concentrations of glucose and growth hormone linearly (P<0.03) increased, whereas concentrations of non-esterified fatty acids linearly (P<0.01) decreased. Results indicate that supplementation of this diet with isobutyrate changed the rumen fermentation pattern towards acetate production, improved digestion and modified plasma concentrations of glucose and growth hormone. This suggests that isobutyrate stimulated digestive microorganisms or enzymes in a dose-dependent manner with the optimum isobutyrate dose at about 40 g per cow per day in terms of improved digestion.  相似文献   

9.
Polymerization of 20% neutralized acrylic acid (Na form), AA, in presence of Karaya gum, KG, or tamarind seed gum, TG, at AA/gum weight ratio of 1/1 and 2/1 results in PAA/KG1, PAA/KG2, PAA/TG1 and PAA/TG2 adducts, respectively (where the suffix 1 or 2 stands for AA/gum ratios of 1/1 or 2/1). Infra red spectra of adducts are examined. Aqueous pastes of adducts, native gums and GG are of non-Newtonian thixotropic flow within a shear rate range of 4–40 s−1. Adduct pastes (7.5% w/v) are of higher apparent viscosities (η) than their native gums or GG, and pastes of TG adducts are of higher η than KG adducts. Except for PAA/TG2 adduct, the power law does not correlate well to the other pastes. Preliminary trials showed that adducts are excellent thickeners for reactive and acid printing on wool, silk and nylon 6. Prints by adducts are of higher color strength than those by native gums or GG. GG paste was completely destroyed after storing for 7 days, whereas η of pastes of adducts and native gums were noticeably decreased upon storing.  相似文献   

10.
To evaluate the effects of a commercially produced serum substitute on the in vitro development of caprine embryos, registered Nubian doelings were synchronized with norgestomet-impregnated implants (Synchromate-B®: CEVA) and superovulated with descending doses of FSH-p® (Schering). A total of 246 embryos was collected and placed in Tissue Culture Medium 199 (TCM 199, Gibco Laboratories) containing Nu-Serum® (NuS) at concentrations of 2.5%, 5.0%, 10%, or 20%. Control treatments consisted of TCM 199 alone or TCM 199 plus 10% heat-inactivated fetal bovine serum (FBS). Embryos developed in all concentrations of NuS to the morula, blastocyst, and expanded blastocyst stages. The TCM 199 plus 10% NuS had significantly higher percentages of embryos developing to the expanded blastocyst stage than TCM 199 plus 10% FBS. Time to expanded blastocyst development in NuS was shorter than in the TCM 199 plus FBS. No stage-specific block to development was observed with embryos collected and cultured in vitro for any of the treatments. These results demonstrate that NuS, when compared to FBS, allowed a higher percentage (P < 0.05) of caprine embryos to develop to the expanded blastocyst stage, thus providing a valuable substitute for FBS.  相似文献   

11.
In this study, a modified version of the gas production technique was used to determine protein fermentation characteristics in rumen fluid of 19 feedstuffs. Performing the incubations in a N-free environment, and with an excess of rapidly fermentable carbohydrates, made N the limiting factor to microbial growth, and so gas production profiles reflected the availability of N from the feed samples. Results showed that fermentation of protein in rumen fluid can be determined with this modified gas production technique, and that there were distinct differences in protein fermentation between the feed samples. Availability of protein for fermentation was highest in wheat, potato pieces and lupin, and lowest in Rumiraap, a formaldehyde treated rapeseed meal, palm kernel expeller and brewery grains. The protein degradation characteristics of the 19 feed ingredients were also determined with the in situ nylon bag technique. With the obtained results, the amount of rumen escape protein (REP) was calculated for each feedstuff. The results showed that the rate of degradation ranged from 0.010/h for Rumiraap to 0.151/h for wheat. The amount of REP ranged from 197 g/kg CP for lupin to 840 g/kg CP for Rumiraap. Comparing the gas production results with the results obtained with the nylon bag technique showed that there was a good relationship between the gas production after 12–25 h of incubation and the calculated amount of REP (r2 = 0.83–0.85). The results show that the adapted gas production technique, being depleted of N and using an excess of rapidly fermentable carbohydrates, is suitable to recognize differences in N availability between feed samples and can be used as an alternative to the nylon bag technique and other in vitro techniques.  相似文献   

12.
A study was carried out to determine the effect of feeding different tree leaves as supplements on nutrient digestion, rumen fermentation and blood parameters of sheep grazing on a semi-arid rangeland. Thirty adult Malpura rams of uniform body weight (39.0 ± 0.75) were divided into five groups of six each. They were grazed as a single flock from 08.00 to 17.00 h on a semi-arid rangeland. After the end of the grazing period, the first group (G1), which was not provided with any supplementation, served as the control. The second group (G2) was supplemented with 200 g of a concentrate mixture per head per day, whereas the third, fourth and fifth groups (G3–G5) were provided with approximately 200 g DM d−1 of freshly cut foliage from Prosopis cineraria, Acacia nilotica and Albezia lebbek. The foliage from P. cineraria contained 133.4 g kg−1 DM condensed tannin (CT) with protein precipitating capacity (PPC) of 66 g kg−1 DM, whereas A. nilotica contained 18.9 g kg−1 DM hydrolysable tannin (HT) with PPC of 11.5 g kg−1 DM. However, A. lebbek did not contain any tannin. The protein contents were 119, 139 and 194 g kg−1 DM, respectively. The DMI (g d−1) was 688, 916, 1024, 1003, 999 in G1, G2, G3, G4 and G5, respectively. Digestible crude protein (DCP) and metabolizable energy (ME) intakes in supplemented groups G2–G5 were higher (P < 0.05) than in the control (G1). Supplementation improved the DM digestibility in all groups, whereas CP digestibility was lower (P < 0.05) in G3 compared to G2, G4 and G5. Rumen fermentation study conducted 6 h after supplementation revealed that total N, ammonia N, and total VFA levels were lower (P < 0.05) in G3 compared to the other supplemented groups. Although the haemoglobin (Hb) levels were similar among groups, blood urea N (BUN) was lowest in G3 compared to the other groups. The initial body weights were similar among groups (mean 39 kg). After 60 days of experimental feeding, all groups maintained their body weight, except the control group (G1), which lost body weight. It was observed, that supplementation with tree leaves containing CT like P. cineraria helps in better rumen fermentation pattern by preventing excessive loss of nitrogen. It was concluded that maximum nutritional benefits of tree leaves could be harvested, if used as supplement rather than as a sole feed.  相似文献   

13.
Stirred, pH controlled batch cultures were carried out with faecal inocula and various chitosans to investigate the fermentation of chitosan derivatives by the human gut flora. Changes in bacterial levels and short chain fatty acids were measured over time. Low, medium and high molecular weight chitosan caused a decrease in bacteroides, bifidobacteria, clostridia and lactobacilli. A similar pattern was seen with chitosan oligosaccharide (COS). Butyrate levels also decreased. A three-stage fermentation model of the human colon was used for investigation of the metabolism of COS. In a region representing the proximal colon, clostridia decreased while lactobacilli increased. In the region representing the transverse colon, bacteroides and clostridia increased. Distally a small increase in bacteroides occurred. Butyrate levels increased. Under the highly competitive conditions of the human colon, many members of the microflora are unable to compete for chitosans of low, medium or high molecular weight. COS were more easily utilised and when added to an in vitro colonic model led to increased production of butyrate, but some populations of potentially detrimental bacteria also increased.  相似文献   

14.
Protein in white clover (Trifolium repens L.) is poorly utilised by ruminants because of its extensive degradation to ammonia in the rumen. However, white clover produces condensed tannins (CT) in its flowers, which can reduce rumen proteolysis. Effects of increasing proportions of clover dry matter (DM) as flowers (and therefore floral CT) on soluble protein, ammonia and volatile fatty acid (VFA) concentrations were determined with in vitro incubations. Minced mixtures of 0, 250, 500, 750 and 1000 g/kg of DM as white clover flower (F) with the remainder as white clover leaf, were incubated in vitro and sampled after 0, 2, 4, 8, 12 and 24 h. Treatments contained 0, 13, 26, 39 and 52 g CT/kg DM, respectively. A further treatment with 500 g/kg DM as flower and 500 g/kg DM as leaf had polyethylene glycol added to remove effects of CT. Increasing the proportion of white clover as flowers from 0 to 1000 g/kg DM reduced net conversion of plant N to ammonia N from 290 to 120 mM/M at least partly due to reduced solubility of the protein. Treatments with 750 g/kg DM or more as clover flowers reduced ammonia concentrations to levels likely to limit microbial growth. Total VFA production was not affected by flower content, although the proportion of acetate to propionate increased. The contribution of CT to treatment effects was small compared to effects attributed to difference in chemical composition between flowers and leaves.  相似文献   

15.
Dry and mature tree fruits are a potential source of protein for goats in the semi-arid areas of southern Africa, but their chemical composition and feeding value is largely unknown. This study presents the chemical composition and in vitro fermentation of indehiscent whole fruits and separated seed and hull fractions from Acacia nilotica, Acacia erubescens, Acacia sieberiana, Acacia erioloba, Piliostigma thonningii and Dichrostachys cinerea trees. Results indicate that the N contents of whole fruits ranged between 13.5 g/kg DM (A. nilotica) and 27.1 g/kg DM (A. erubescens). Seeds had a higher N content than hulls for all tree species. A. nilotica, D. cinerea and P. thonningii fruits had high levels of extractable phenolics (758, 458 and 299 g/kg DM, respectively). Soluble phenolics (SPh) and ytterbium precipitable phenolics (YbPh) levels were negatively correlated to in vitro gas production but positively correlated to in vitro organic matter degradability (iOMD). Partition factors for whole fruits at 48 h ranged between 3.6 mg/ml for A. erioloba and 7.8 mg/ml for A. nilotica. Seeds of A. erioloba, A. erubescens and P. thonningii were consistently fermented more efficiently throughout the incubation period compared to their whole fruits or hulls. Estimating in vitro degradability of phenolic-rich substrates through filtration procedures can give erroneous results due to the loss of soluble phenolics, which are not necessarily degradable. The feeding value of fruits from D. cinerea and A. nilotica tree species may be reduced due to the presence of high levels of phenolics.  相似文献   

16.
Effects of proportions of neutral detergent fibre (aNDFom) and starch, as well as their degradation rates, on rumen fermentation were tested using an in vitro rumen simulation system (SIMCO). The in vitro system was designed to simulate selective particle retention and had an average fluid volume of 1150 ml with a liquid dilution rate of approximately 0.07 h−1. Two types of hay (aNDFom sources) and two types of starch were each included at two different levels in the diet and were examined in an experiment following a 2×2×2 factorial arrangement of treatments (eight diet combinations). The hay was either late-cut timothy (Phleum pretense L.) or early cut meadow grass (Poa pratensis L.), with ruminal in situ aNDFom digestion rates of 0.03–0.04 and 0.07–0.08 h−1, respectively. The two starch types were raw (R) and cooked (C) potato starch with previously determined in vitro ruminal digestion rates of 0.04 and 0.20 h−1, respectively. The starch levels were 300 and 600 g/kg diet dry matter (DM) with the remaining being hay (282–682 g/kg DM) and peptone (14–111 g/kg DM). The aNDFom level varied among the diets with different starch levels and hay types. The peptone acted as a source of peptides and, together with ammonia salts from buffer, was used to balance the N contents of the diets. The feeding level for each of the eight vessels was 28 g DM/d. Two 10-day simulations were made with the system. The average pH was higher (P<0.05) for all treatments with raw potato starch (6.19) versus cooked starch (6.07). Protozoa scores, on a qualitative scale, declined faster at the higher starch level. The aNDFom digestibility was, as expected, higher (P<0.001) for meadow hay (0.57) than timothy (0.32), and was also higher (P<0.001) at the lower starch level (0.54) versus the higher (0.35). Microbial protein production efficiency (mg microbial N/g organic matter truly digested) was higher for the faster degrading aNDFom (P<0.01) and starch (P<0.05) sources, but was not affected by starch level. Cooked starch resulted in a lower acetate proportion (449 mmol/mol versus 591 mmol/mol VFA; P<0.001) but higher proportions of propionate (297 mmol/mol versus 236 mmol/mol VFA; P<0.001), and butyrate (169 mmol/mol versus 127 mmol/mol VFA; P<0.01). Butyrate increased with starch level (127 mmol/mol versus 169 mmol/mol VFA; P<0.01), and was also higher for meadow hay versus timothy (168 mmol/mol versus 128 mmol/mol VFA; P<0.01). Interactions between the treatments demonstrate that the response in VFA pattern to starch level is dependent on starch and aNDFom sources. Substrates such as starch and aNDFom are fermented differently depending on their rates of ruminal degradation.  相似文献   

17.
In the present study, we examined the ability of immature germinal vesicle (GV) and subjected to in vitro matured (MII) yak oocytes to survive after cryopreservation as well as their subsequent development following in vitro maturation and fertilization. Both GV and MII oocytes were cryopreserved by using two different vitrification solutions (VS); VS-I contained 10% ethylene glycol (EG) and 10% dimethylsulfoxide (DMSO) in TCM-199 + 20% (v/v) fetal calf serum (FCS) whereas VS-II contained 40% EG + 18% Ficoll + 0.5 M sucrose in TCM-199 + 20% FCS. The percentage of oocytes found to be morphologically normal was greater (P < 0.01) in VS-I group than in VS-II group. Rates of cleavage (30.6–42.2%) and blastocyst formation (2.9–8.9%) did not differ among groups, but were lower than in unfrozen control (55.7% and 25.4%, P < 0.01). These results show that a combination of EG and DMSO or EG, Ficoll and sucrose can be used to cryopreserve yak oocytes in French straws.  相似文献   

18.
The objective of this study was to evaluate the effects of LaCl3 supplementation on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in the total tract of steers. Eight ruminally cannulated Simmental steers (420 ± 20 kg) were used in a replicated 4 × 4 Latin square experiment. The treatments were control (without LaCl3); La-low; La-medium and La-high with 450, 900 and 1800 mg LaCl3 per steer per day, respectively. Diet consisted of 600 g/kg corn stover and 400 g/kg concentrate (dry matter [DM] basis). Dry matter intake (averaged 9 kg/day) was restricted to a maximum of 90% of ad libitum intake. Ruminal pH (range of 6.59–6.42) was quadratically (P<0.04) changed, whereas total volatile fatty acids (VFA) concentration (range of 74.16–88.61 mM) was linearly (P<0.01) and quadratically (P<0.01) increased with increasing La supplementation. Ratio of acetate to propionate decreased linearly (P<0.01) from 3.28 to 1.79 as La supplementation increased due to the increased in propionate production. In situ ruminal neutral detergent fibre (aNDF) degradation of corn stover was improved but the crude protein (CP) degradability of soybean meal was decreased with increasing La supplementation. Urinary excretion of purine derivatives was quadratically (P<0.01) changed with altering La supplementation (75.5, 81.0, 82.4 and 70.6 mmol/day for control, low-, medium- and high-LaCl3 supplementation, respectively). Similarly, digestibilities of organic matter, aNDF and CP in the total tract were also linearly and quadratically increased with increasing La supplementation. The present results indicate that supplementation of diet with LaCl3 improved rumen fermentation and feed digestion in beef cattle. It was suggested that the La stimulated the digestive microorganisms or enzymes in a dose-dependent manner. In the experimental conditions of this trial, the optimum La dose was about 900 mg LaCl3 per steer per day.  相似文献   

19.
Applications of three concentrations of oil-free neem seed extracts (Azadirachta indica A. Juss; Meliaceae) to cabbage plants in cages did not deter oviposition by individuals of three species of noctuid moths,Trichoplusia ni, Peridroma saucia, andSpodoptera litura. The concentrations used corresponded to 10, 50, and 100 ppm of the main active ingredient, azadirachtin. The total number of eggs laid per female, female longevity, and median day of oviposition were not affected. Sprays of the neem oil-based insecticide Margosan-O R , and a 1% aqueous emulsion of a refined neem seed oil similarly had no effect on any of the parameters studied. However, a 1% crude oil emulsion significantly reduced the proportion of eggs laid byS. litura on treated plants. Our results suggest that literature reports of significant neem-based oviposition deterrence toS. litura are the result of compounds that are removed by higher levels of processing and thus not likely to be found in most commercial neem seed formulations. Sprays consisting of highly processed neem seed extracts, used at concentrations that provide larval control, are unlikely to be generally effective as oviposition deterrents to noctuid pests.  相似文献   

20.
An in vitro study was conducted to examine the effect of adding monensin, fish oil, or their combination on rumen fermentation and conjugated linoleic acid (CLA) production by mixed ruminal bacteria when incubated with safflower oil. Concentrate (1 g/100 ml) with safflower oil (0.2 g/100 ml) was added to a mixed solution (600 ml) of strained rumen fluid and buffer (control). Monensin (10 ppm), fish oil (0.02 g/100 ml), or monensin plus fish oil was also added into control mixture. All the culture solutions prepared were incubated anaerobically at 39 °C for 12 h. A higher pH and ammonia concentration were observed from the culture solution containing monensin at 12 h of incubation than those from the control or the culture containing fish oil. Monensin increased (P < 0.007) the C3 content over all the collection times of culture solution while reducing the C4 content at 6 h (P < 0.018) and 12 h (P < 0.001) of incubations. Supplementation of monensin, fish oil or their combination changed the content of C18-fatty acids of ruminal culture. Monensin alone reduced (P < 0.021) the content of cis-9, trans-11 CLA compared to fish oil at all sampling times, but increased (P < 0.041) the trans-10, cis-12 CLA production compared to fish oil addition and the control which were similar at incubation for 12 h. The combination of monensin and fish oil increased the content of cis-9, trans-11 CLA (P < 0.023) and transvaccenic acid (TVA, P < 0.018) significantly compared to the control or monensin alone at incubation for 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号