首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of proteins in 2-D gels and their subsequent identification by MS is still the "gold standard" in proteomics. Fluorescent detection has increasingly replaced colorimetric and radiometric detection on gels and blots. The reasons for this are multiple and varied and include higher sensitivity, better quantitation, increased dynamic range, speed, safety and ease of use. Unlike other methods, fluorescent protein detection is also typically very consistent in response from protein to protein and in many cases is compatible with MS methods for protein identification. The superior sensitivity and benefits achieved by fluorescent techniques have spurred the development of instrumentation capable of delivering precise, sensitive, high-resolution image acquisition over a wide variety of excitation and emission wavelengths. This report focuses on applications using the highly sensitive, charge-coupled device based ProXPRESS multilabel imager, readily configurable for image acquisition over a wide variety of wavelengths (380-700 nm and ultraviolet (UV)) using xenon lamp or UV excitation. The ability to simultaneously detect enzyme activities or protein modifications with different color fluorescent probes in addition to total protein amounts (multiplexing) allows the further mining of proteomic data content from a single set of protein samples. To this end, the development of instrumentation that enables a multiplexing strategy will become central to in-depth proteomic studies. The ProXPRESS maximizes the efficiency of experimental strategies that require flexibility and multicolor fluorescence detection.  相似文献   

2.
The cellular redox state is an important determinant of metal phytotoxicity. In this study we investigated the influence of cadmium (Cd) and copper (Cu) stress on the cellular redox balance in relation to oxidative signalling and damage in Arabidopsis thaliana. Both metals were easily taken up by the roots, but the translocation to the aboveground parts was restricted to Cd stress. In the roots, Cu directly induced an oxidative burst, whereas enzymatic ROS (reactive oxygen species) production via NADPH oxidases seems important in oxidative stress caused by Cd. Furthermore, in the roots, the glutathione metabolism plays a crucial role in controlling the gene regulation of the antioxidative defence mechanism under Cd stress. Metal-specific alterations were also noticed with regard to the microRNA regulation of CuZnSOD gene expression in both roots and leaves. The appearance of lipid peroxidation is dual: it can be an indication of oxidative damage as well as an indication of oxidative signalling as lipoxygenases are induced after metal exposure and are initial enzymes in oxylipin biosynthesis.In conclusion, the metal-induced cellular redox imbalance is strongly dependent on the chemical properties of the metal and the plant organ considered. The stress intensity determines its involvement in downstream responses in relation to oxidative damage or signalling.  相似文献   

3.
Coomassie blue staining of gels and blots is commonly employed for detection and quantitation of proteins by densitometry. We found that Coomassie blue or Fast Green FCF bound to protein fluoresces in the near infrared. We took advantage of this property to develop a rapid and sensitive method for detection and quantitation of proteins in gels and on blots. The fluorescence response is quantitative for protein content between 10 ng and 20 microg per band or spot. Staining and destaining require only 30 min, and the method is compatible with subsequent immunodetection.  相似文献   

4.
The metastatic spread of tumor cells in malignant progression is known to be a major cause of cancer mortality. Protein glycosylation is increasingly being recognized as one of the most prominent biochemical alterations associated with malignant transformation and tumorigenesis. The Multiplexed Proteomics (MP) approach is a new technology that permits quantitative, multicolor fluorescence detection of proteins in two-dimensional (2-D) gels and on Western blots. This methodology allows the parallel determination of both altered glycosylation patterns and protein expression level changes within a single 2-D gel experiment. The linear responses of the fluorescent dyes utilized allow rigorous quantitation of changes in protein expression over a broad 3-log linear dynamic range. Global analysis of changes in protein glycosylation and total protein expression is followed by dichromatic, lectin-based profiling methods for rapidly categorizing glycan branching structures. The MP approach was applied to whole tissue extracts of normal and cancerous liver, so that altered glycosylation modification patterns and protein expression levels could be determined. One prominent glycoprotein determined to be up-regulated in the tumor tissue was haptoglobin, an acute-phase response protein. The detection methodologies associated with the MP technology radically increase the information content of 2-D gel experiments. This new information greatly enhances the applicability of these experiments in addressing fundamental questions associated with proteome-wide glycosylation changes related to cancer.  相似文献   

5.
Protein carbonyl detection has been commonly used to analyze the degree of damage to proteins under oxidative stress conditions. Most laboratories rely on derivatization of carbonyl groups with dinitrophenylhydrazine followed by Western blot analysis using antibodies against the dinitrophenyl moiety. This paper describes a protein carbonyl detection method based on fluorescent Bodipy, Cy3 and Cy5 hydrazides. Using this approach, Western blot and immunodetection are no longer needed, shortening the procedure and increasing accuracy. Combination of Cy3 and Cy5 hydrazides allows multiplexing analyses in a single two-dimensional gel. Derivatization with Bodipy hydrazide allows easy matching of the spots of interest and those obtained by general fluorescent protein staining methods, which facilitates excising target proteins from the gels and identifying them. This method is effective for detecting protein carbonylation in samples of proteins submitted to metal-catalyzed oxidation "in vitro" and assessing the effect of hydrogen peroxide and chronological aging on protein oxidative damage in yeast cells.  相似文献   

6.
We have used bidirectional transfer methods in concert with SMART total cDNA complex probes to sequentially screen differential display arrays. In this report we show the utility of this methodology in examining a manganese superoxide dismutase cDNA fragment which we detected while evaluating the effects of the proinflammatory cytokines IL1-beta, TNF-alpha, and IL6 on human umbilical vein endothelial cell (HUVEC) gene expression. By using parallel hybridization of the bidirectional blots with SMART total cDNA (32)P probes derived from untreated or cytokine-treated HUVECs, differential expression between cell treatments can be clearly evaluated. Subsequent screening using this bidirectional blot method results in detection of modulated cDNA clones. Northern and total cDNA blot hybridization with the cDNA clonal fragment confirmed both modulated expression and the efficacy of this screening method. These procedures allow one to use bidirectional blots to evaluate band modulation on agarose gels which are initially run to evaluate the reamplification of display fragments or to confirm cloned cDNA fragments. Thus, bidirectional blot analysis using SMART total cDNA probes allows direct evaluation of differential display bands from the initial reamplification through plasmid insert cloning, increasing the investigator's ability to eliminate false-positive bands during each step of analysis.  相似文献   

7.
Background Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules.Scope This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes.Conclusions Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal dynamics as well as ROS- and NO-dependent signalling networks, although the mechanisms involved have not yet been established. Peroxisomes can therefore be regarded as a highly important decision-making platform in the cell, where ROS and RNS play a determining role.  相似文献   

8.
Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes. Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response.  相似文献   

9.
Analysis of complex biochemical processes at the level of the proteome requires methods that quantitatively solubilize cytosolic and membrane bound proteins yet are compatible with isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, it is often necessary to employ several highly sensitive detection methods to identify key proteins that are modified or exhibit a change in expression levels in response to a given experimental stimulus or condition. Methods were developed that efficiently extract tissues or lyse cultured cells and quantitatively solubilize proteins in a single step without the need to shear nucleic acids. These approaches utilize urea, thiourea, a mixture of detergents, low levels of an ampholyte blend, reductant and a combination of alcohols. To aid in the detection of low abundance proteins and the accurate identification of specific proteins of interest in these samples, two approaches were pursued. In one, proteins are transferred from two-dimensional (2-D) gels to blot membranes. Proteins are then detected by staining with SYPRO Ruby and the resulting 2-D protein pattern is captured using a charge-coupled device (CCD) camera. The blots are then probed with antibodies directed against the protein(s) or functionalities of interest. The resulting chemiluminescent blot image is also generated with the CCD camera and the fluorescent SYPRO Ruby image is recaptured again without moving the membrane. It is thereby possible to generate a direct image overlay of the blot pattern on that of the stained protein pattern. This approach significantly aids in the accurate identification of the dye-stained protein that is detected by the specific antibody. In addition to detecting protein post-gel transfer, a second approach utilizes protein samples labeled with fluorescent dyes prior to 2-D electrophoresis in an effort to increase the sensitivity of protein detection and to facilitate protein quantitation. It is also possible to stain the blots with different dyes and overlay these images as well. Using these approaches, it is possible to perform more rapid and accurate comparative analyses and proteomic, post-gel characterization of proteins of interest than using comparative image analysis of multiple gels.  相似文献   

10.
11.
12.
TDP-43 is the major disease protein in ubiquitin-positive inclusions of amyotrophic lateral sclerosis and frontotemporal lobar degeneration (FTLD) characterized by TDP-43 pathology (FTLD-TDP). Accumulation of insoluble TDP-43 aggregates could impair normal TDP-43 functions and initiate disease progression. Thus, it is critical to define the signalling mechanisms regulating TDP-43 since this could open up new avenues for therapeutic interventions. Here, we have identified a redox-mediated signalling mechanism directly regulating TDP-43. Using in vitro and cell-based studies, we demonstrate that oxidative stress promotes TDP-43 cross-linking via cysteine oxidation and disulphide bond formation leading to decreased TDP-43 solubility. Biochemical analysis identified several cysteine residues located within and adjacent to the second RNA-recognition motif that contribute to both intra- and inter-molecular interactions, supporting TDP-43 as a target of redox signalling. Moreover, increased levels of cross-linked TDP-43 species are found in FTLD-TDP brains, indicating that aberrant TDP-43 cross-linking is a prominent pathological feature of this disease. Thus, TDP-43 is dynamically regulated by a redox regulatory switch that links oxidative stress to the modulation of TDP-43 and its downstream targets.  相似文献   

13.
Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.  相似文献   

14.
Recognition of avirulent microbial pathogens activates an oxidative burst leading to the accumulation of reactive oxygen intermediates (ROIs), which are thought to integrate a diverse set of defence mechanisms resulting in the establishment of plant disease resistance. A novel transgenic Arabidopsis line containing a gst1:luc transgene was developed and employed to report the temporal and spatial dynamics of ROI accumulation and cognate redox signalling in response to attempted infection by avirulent strains of Pseudomonas syringae pv. tomato (Pst). Strong engagement of the oxidative burst was dependent on the presence of functional Pst hrpS and hrpA gene products. Experiments employing pharmacological agents suggested that at least two distinct sources, including an NADPH oxidase and a peroxidase-type enzyme, contributed to the generation of redox cues. The analysis of gst1 and pal1 gene expression in nahG, coi1 and etr1 plants suggested that engagement of the oxidative burst and cognate redox signalling functioned independently of salicylic acid, methyl jasmonate and ethylene. In contrast, studies using a panel of protein kinase and phosphatase inhibitors and in-gel kinase assays in these mutant backgrounds suggested that a 48 kDa mitogen-activated protein kinase (MAPK) activity was required for the activation of gst1 and pal1 in response to redox cues. Thus the engagement of a bifurcating redox signalling pathway possessing a MAPK module may contribute both to the establishment of plant disease resistance, and to the development of cellular protectant mechanisms.  相似文献   

15.
Vicinity analysis (VA) is a new methodology developed to identify similarities between protein binding sites based on their three-dimensional structure and the chemical similarity of matching residues. The major objective is to enable searching of the Protein Data Bank (PDB) for similar sub-pockets, especially in proteins from different structural and biochemical series. Inspection of the ligands bound in these pockets should allow ligand functionality to be identified, thus suggesting novel monomers for use in library synthesis. VA has been developed initially using the ATP binding site in kinases, an important class of protein targets involved in cell signalling and growth regulation. This paper defines the VA procedure and describes matches to the phosphate binding sub-pocket of cyclin-dependent protein kinase 2 that were found by searching a small test database that has also been used to parameterise the methodology.  相似文献   

16.
Tsakanikas P  Manolakos ES 《Proteomics》2011,11(10):2038-2050
Two-dimensional gel electrophoresis (2-DE) is the most established protein separation method used in expression proteomics. Despite the existence of sophisticated software tools, 2-DE gel image analysis still remains a serious bottleneck. The low accuracies of commercial software packages and the extensive manual calibration that they often require for acceptable results show that we are far from achieving the goal of a fully automated and reliable, high-throughput gel processing system. We present a novel spot detection and quantification methodology which draws heavily from unsupervised machine-learning methods. Using the proposed hierarchical machine learning-based segmentation methodology reduces both the number of faint spots missed (improves sensitivity) and the number of extraneous spots introduced (improves precision). The detection and quantification performance has been thoroughly evaluated and is shown to compare favorably (higher F-measure) to a commercially available software package (PDQuest). The whole image analysis pipeline that we have developed is fully automated and can be used for high-throughput proteomics analysis since it does not require any manual intervention for recalibration every time a new 2-DE gel image is to be analyzed. Furthermore, it can be easily parallelized for high performance and also applied without any modification to prealigned group average gels.  相似文献   

17.
Photon imaging is an increasingly important technique for the measurement and analysis of chemiluminescence and bioluminescence. New high-performance low-light level imaging systems have recently become available for the life science. These systems use advances in camera design and digital image processing and are now being used for a wide range of luminescence applications. They offer good sensitivity for photon detection and large dynamic range, and are suitable for quantitative analysis. This is achieved using a range of software techniques including image arithmetic, histogramming or summing regions of interest, feature extraction and multiple image processing for kinetics or assay screening. Improvements in imageprocessing hardware and software have increased the usefulness of these systems in the biosciences. Low-light imaging is a rapid and non-invasive method for the sensitive detection and analysis of luminescent assays. As such it offers a powerful and sensitive tool for investigating processes, both at the cellular level (luc and lux reporter genes, intracellular signalling) and for measurement of macro samples (immunoassays, gels and blots, tissue sections).  相似文献   

18.
There is increasing evidence that several reversible oxidative post-translational modifications of protein cysteines participate in cell signalling. Specific proteomic techniques are required to identify these modifications and to study their regulation in different cell processes, that are collectively known as thiol redox proteomics. Recently, fluorescence derivatization methods have been developed that enable these post-translational modifications to be studied using proteomic workflows based on two-dimensional electrophoresis, which is a relatively accessible and affordable technique. As well as enabling a large number of samples to be processed, two-dimensional electrophoresis has the advantage that it does not rely on the intensive use of mass spectrometers. This methodology allows to "visualise" redox changes in a broad context and, although identification of the modified residues is not so straightforward, complementary derivatization can overcome this drawback. Here we review the different derivatization strategies that have been employed in these studies, comparing their advantages and potential limitations. We also review the applications and results obtained, with particular emphasis on those involving (patho)physiological stimuli, thereby showing the potential of these techniques to study the thiol redox proteome.  相似文献   

19.
Reactive oxygen and nitrogen species change cellular responses through diverse mechanisms that are now being defined. At low levels, they are signalling molecules, and at high levels, they damage organelles, particularly the mitochondria. Oxidative damage and the associated mitochondrial dysfunction may result in energy depletion, accumulation of cytotoxic mediators and cell death. Understanding the interface between stress adaptation and cell death then is important for understanding redox biology and disease pathogenesis. Recent studies have found that one major sensor of redox signalling at this switch in cellular responses is autophagy. Autophagic activities are mediated by a complex molecular machinery including more than 30 Atg (AuTophaGy-related) proteins and 50 lysosomal hydrolases. Autophagosomes form membrane structures, sequester damaged, oxidized or dysfunctional intracellular components and organelles, and direct them to the lysosomes for degradation. This autophagic process is the sole known mechanism for mitochondrial turnover. It has been speculated that dysfunction of autophagy may result in abnormal mitochondrial function and oxidative or nitrative stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is controlled, and the impact of autophagic dysfunction on cellular oxidative stress. The present review highlights recent studies on redox signalling in the regulation of autophagy, in the context of the basic mechanisms of mitophagy. Furthermore, we discuss the impact of autophagy on mitochondrial function and accumulation of reactive species. This is particularly relevant to degenerative diseases in which oxidative stress occurs over time, and dysfunction in both the mitochondrial and autophagic pathways play a role.  相似文献   

20.
Summary In the present communication we describe a process for the preparation of an acidic henna leaf extract useful as a general protein stain for both polyacrylamide gels and protein blots. The staining is reversible by changing its pH and does not require protein fixation or destaining steps. This staining procedure is simpler and also, its sensitivity is comparable with the two commonly used organic stains i.e. Coomassie Blue and Amido Black. Under optimum conditions the protein detection limits of acidic henna leaf extract varied from 50 ng to 100 ng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号