首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

DNA chemical modifications caused by the binding of some antitumor drugs give rise to a very strong local stabilization of the double helix. These sites melt at a temperature that is well above the melting temperatures of ordinary AT and GC base pairs. In this work we have examined the melting behavior of DNA containing very stable sites. Analytical expressions were derived and used to evaluate the thermodynamic properties of homopolymers DNA with several different distributions of stable sites. The results were extended to DNA with a heterogeneous sequence of AT and GC base pairs. The results were compared to the melting properties of DNA with ordinary covalent interstrand cross-links. It was found that, as with an ordinary interstrand cross-link, a single strongly stabilized site makes a DNA's melting temperature (Tm ) independent of strand concentration. However in contrast to a DNA with an interstrand cross-link, a strongly stabilized site makes the DNA's Tm independent of DNA length and equal to T , the melting temperature of an infinite length DNA with the same GC-content and without a stabilized site. Moreover, at a temperature where more than 80% of base pairs are melted, the number of ordinary (non-modified) helical base pairs (n) is independent of both the DNA length and the location of the stabilized sites. For this condition, n(T) = (2ω-a) S (1- S ) and S = expS(T∞-T)/(RT)] where ω is the number of strongly stabilized sites in the DNA chain, a is the number of DNA ends that contain a stabilized site, and ΔS, T, and R are the base pair entropy change, the temperature, and the universal gas constant per mole. The above expression is valid for a temperature interval that corresponds to n<0.2N for ω=1, and n<0.1N for ω>1, where N is the number of ordinary base pairs in the DNA chain.  相似文献   

2.
A computer modeling of thermodynamic properties of a long DNA of N base pairs that includes omega interstrand crosslinks (ICLs), or omega chemical modifications involving one strand (monofunctional adducts, intrastrand crosslinks) has been carried out. It is supposed in our calculation that both types of chemical modifications change the free energy of the helix-coil transition at sites of their location by deltaF. The value deltaF>0 corresponds to stabilization, i.e., to the increase in melting temperature. It is also taken into account that ICLs form additional loops in melted regions and prohibit strand dissociation after full DNA melting. It is shown that the main effect of interstrand crosslinks on the stability of long DNA's is caused by the formation of additional loops in melted regions. This formation increases DNA melting temperature (T(m)) much stronger than replacing omega base pairs of AT type with GC. A prohibition of strand dissociation after crosslinking, which strongly elevates the melting temperature of oligonucleotide duplexes, does not influence melting behavior of long DNA's (N>/=1000 bp). As was demonstrated earlier for the modifications involving one or the other strand, the dependence of the shift of melting temperature deltaT(m) on the relative number of modifications r = omega/(2N) is a linear function for any deltaF, and deltaT(m)(r) identical with 0 for the ideal modifications (deltaF=0). We have shown that deltaT(m)(r) is the same for periodical and random distribution if the absolute value of deltaF is less 2 kcal. The absolute value of deltaT(m)(r) at deltaF>2 kcal and deltaF<-2 kcal is higher for periodical distribution. For interstrand crosslinks, the character of the dependence deltaT(m)(r) is quite different. It is nonlinear, and the shape of the corresponding curve is strongly dependent on deltaF. For "ideal" interstrand crosslinks (deltaF=0), the function deltaT(m)(r) is not zero. It is monotone positive nonlinear, and its slope decreases with r. If r<0.004, then the entropy stabilizing effect of interstrand crosslinking itself exceeds the influence of a distortion of the double helix at sites of their location. The resulting deltaT(m)(r) is positive even in the case of the infinite destabilization at sites of the ICLs (deltaF--> -infinity). In general, stabilizing influence of interstrand crosslinks is almost fully compensated for by local structural distortions caused by them if 0相似文献   

3.
Abstract

DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this “cross-linking effect” (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the “cross-linking effect” (18–20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20–40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

4.
DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this "cross-linking effect" (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the "cross-linking effect" (18 - 20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20- 40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.  相似文献   

5.
Abstract

Covalent and strong coordination binding to DNA of a large number of antitumour drugs and other compounds leads to interstrand cross-link formation. To investigate cross-link influence on double helix stability, two methods are developed for the calculation of melting curves. The first method is based on Poland's approach. It requires computer time proportional to u-N, where u is the average distance (in base pairs) between neighboring crosslinks, and N is the number of base pairs in the DNA chain. The method is more suitable when u is not large, and small loops formed by interstrand cross-links in melted regions strongly affect DNA melting. The computer time for the second method, based on the Fixman-Freire approach, does not depend on the number of cross-links and is proportional to I N (I is the number of exponential functions used for a decomposition of the loop entropy factor). It is more appropriate when N and u are large, and therefore particular values of the entropy factors of small loops do not influence DNA melting behavior.  相似文献   

6.
The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.  相似文献   

7.
J M Malinge  C Prez    M Leng 《Nucleic acids research》1994,22(19):3834-3839
Physico-chemical and immunological studies have been done in order to further characterize the distorsions induced in DNA by the interstrand cross-links formed between the antitumor drug cis-diamminedichloroplatinum (II) (cis-DDP) and two guanines on the opposite strands of DNA at the d(GC/GC) sites. Bending (45 degrees) and unwinding (79 +/- 4 degrees) were determined from the electrophoretic mobility of multimers of 21- 24-base pairs double-stranded oligonucleotides containing an interstrand cross-link in the central sequence d(TGCT/AGCA). The distorsions induced by the interstrand cross-link in the three 22-base pairs oligonucleotides d(TGCT/AGCA), d(AGCT/AGCT) and d(CGCT/AGCG) were compared by means of gel electrophoresis, circular dichroism, phenanthroline-copper footprinting and antibodies specifically directed against cis-DDP interstrand cross-links. The four different technical approaches indicate that the distorsions are independent of the chemical nature of the base pairs adjacent to the interstrand cross-link. The general conclusion is that the interstrand cross-link induces a bending and in particular an unwinding larger than other platinum adducts and the distorsions are independent of the nature of the bases (purine or pyrimidine) adjacent to the d(GC/GC) site.  相似文献   

8.
4,5',8-Trimethylpsoralen (TMP) cross-links a 5' TpA or a 5' ApT site by photoreacting with one thymine moiety in each DNA strand. We are interested in whether psoralen interstrand cross-links all share one structure or whether there are significant differences. In this paper, we employed a rapid method for probing the structure of the cross-link by making a series of TMP cross-linked duplexes containing specific base-pair mismatches. The relative stability provided by a base pair can be correlated with neighboring base pairs by comparing the extents of gel retardation when base-pair mismatches happen in each position. From our studies, we infer that with respect to the furan-side strand, the 5'T.A base pair of the two T.A base pairs in the TpA site is not hydrogen bonded. Immediately on each side of the cross-linked TpA site is a highly stabilized base pair. Next, a region of decreased stability occurs in each arm of a cross-linked duplex and these base pairs of least stability are located farther away from the cross-linked thymines as the lengths of the arms of the cross-linked helix increase. Finally, even in 7 M urea at 49 degrees C the cross-linked helix is hydrogen bonded at both ends of a duplex of 22 base pairs. We propose that the structures of interstrand cross-links in DNA vary appreciably with the DNA sequence, the length of the DNA duplex, and the structures of the DNA cross-linking agents.  相似文献   

9.
10.
The solution structure of an interstrand cross-linked self-complementary oligodeoxynucleotide containing directly opposed alkylated N(4)C-ethyl-N(4)C cytosine bases was determined by molecular dynamics calculations guided by NMR-derived restraints. The undecamer d(CGAAACTTTCG)(2), where C represents directly opposed alkylated N(4)C-ethyl-N(4)C cytosine bases, serves as model for the cytotoxic cross-links formed by bifunctional alkylating agents used in cancer therapy. The structure of the duplex shows the cross-link protruding into the major groove. An increase in the diameter of the DNA at the pseudoplatform formed by the cross-linked residues creates an A-DNA characteristic hole in the central portion of the DNA. This results in a centrally underwound base step and a number of subsequent overwinding steps leading to an overall axis bend toward the major groove. The structure shows narrowing of both minor and major grooves in the proximity of the cross-link. The perturbation leads to preferential intrastrand base stacking, disruption of adjacent canonical (A.T) base pairing, and buckling of base pairs, the extent of which diminishes with progression away from the lesion site. Overall, the distortion induced by the cross-link spreads over three base pairs on the 5'- and 3'-sides of the cross-link.  相似文献   

11.
The C4'-oxidized abasic site (C4-AP) forms two types of interstrand cross-links with the adjacent nucleotides in DNA. Previous experiments revealed that dG does not react with the lesion and that formation of one type of cross-link is catalyzed by the opposing dA. iso-Guanosine·dC and 2-aminopurine·dT base pairs were used to determine why dG does not cross-link with C4-AP despite its well known reactivity with other bis-electrophiles. 7-Deaza-2'-deoxyadenosine was used to probe the role of the nucleotide opposite C4-AP in the catalysis of interstrand cross-link formation.  相似文献   

12.
Binding of the antitumor compound cisplatin to DNA locally distorts the double helix. These distortions correlate with a decrease in DNA melting temperature (Tm). However, the influence of cisplatin on DNA stability is more complex because it decreases the DNA charge density. In this way, cisplatin increases the melting temperature and partially compensates for the destabilizing influence of structural distortions. The stabilization is stronger at low Na+ ion concentration. Due to this compensation, the total decrease in the DNA melting temperature after cisplatin binding is much lower than the decrease caused by the distortions themselves, especially at low [Na+]. It is shown in this study that, besides Na+ concentration, pH also strongly influences the value of a change in the melting temperature caused by cisplatin. In alkaline medium (pH=10.5-10.8), a fall in the melting temperature caused by platination is enhanced several times with respect to neutral medium. Such a stronger drop in Tm is explained by a decrease in pK values of base pairs caused by lowering the charge density under platination that facilitates proton release. At neutral pH, the proton release is low for both control and platinated DNA and does not influence the melting behavior. Therefore, lowering in the charge density under platination, besides stabilization, gives additional destabilization just in alkaline medium. Destabilization caused by structural distortions due to this pH induced compensation of stabilizing effect is more pronounced. In the presence of carbonate ion, destabilization caused by high pH value is strengthened. As a decrease in DNA charge density, interstrand crosslinking caused by cisplatin also increases the DNA stability due to loss in the entropy of the melted state. However, computer modeling of DNA stability demonstrates that interstrand crosslinks formed by cisplatin do not stabilize long DNA. It is shown that the increase in Tm caused by interstrand crosslinking itself is compensated for by a local destabilization of the double helix at the sites of location of interstrand crosslinks formed by cisplatin.  相似文献   

13.
14.
The DNA duplex d(CTCTCG*AGTCTC).d(GAGAC-TC*GAGAG) containing a single trans- diammine-dichloroplatinum(II) interstrand cross-link (where G* and C* represent the platinated bases) has been studied by two-dimensional NMR. All the exchangeable and non-exchangeable proton resonance lines were assigned (except H5'/H5") and the NOE intensities were transformed into distances via the RELAZ program. By combining the NOESY and COSY data (330 constraints) and NMR-constrained molecular mechanics using JUMNA, a solution structure of the cross-linked duplex has been determined. The duplex is distorted over two base pairs on each side of the interstrand cross-link and exhibits a slight bending of its axis ( approximately 20 degrees ) towards the minor groove. The platinated guanine G* adopts a syn conformation. The rotation results in a Hoogsteen-type pairing between the complementary G(6)* and C(19)* residues which is mediated by the platinum moiety and is stabilized by a hydrogen bond between O6(G(6)*) and N4H(C(19)*). The rise between the cross-linked residues and the adjacent residues is increased owing to the interaction between these adjacent residues and the ammine groups of the platinum moiety. These results are discussed in relation to the slow rate of closure of the monofunctional adducts into interstrand cross-links.  相似文献   

15.
Systematic data on the dependence of the melting curve parameters of DNA from different organisms on the concentration of salt (C2H5)5NBr have been obtained. The melting curves were studied by spectrophotometric as well as by microcalorimetric methods. The DNA melting range width is shown to pass through the minimum value delta0T = 0.6 +/- 0.1 degrees at the point of inversion of relative stability of AT and GC pairs that corresponds to the concentration of (C2H5)4NBr equal to 2.9 +/- 0.1 M. This concentration, as well as the value of delta0T, are the same for different DNA's of common chemical structure. The T2 and T4 DNA containing hydroxymethylated and glucosylated cytosine residues show an anomalous behaviour. The enthalpy of melting falls very slowly as the salt concentration increases. The possible causes of the observed value of delta0T are discussed. A conclusion is drawn that the main factor which governs the DNA melting process in the region of inversion of the relative stability of AT and GC pairs is the heterogeneity of stacking interaction between different base pairs.  相似文献   

16.
Gruenwedel DW  Hsu CH 《Biopolymers》1969,7(4):557-570
When DNA's of differing GC:AT base ratios, e.g. synthetic poly dAT, T4 DNA,calf thymus DNA, E. coli DNA, and M. lysodeikticus DNA, are heat-denatured at neutral pH in increasing concentrations of N(a)(2)SO(4) or C(s)(2)SO(4) as supporting electrolytes,the variation of melting temperature with average base composition, dT(m)/dX(G)(C), changes from 45°C (in 0.002M Na) to ll°C (in 4.5M Na) and from 42°C (in 0.002M Cs) to 3°C(in 4.5M Cs). The decrease of dT(m)/dX(G)(C) is a monotonic function of decreasing water activity in the salt solutions. We interpret this decreased composition dependence of the thermal stability of the various DNA's as being due to a destabilization of the GC base pairs relative to the AT base pairs by the concentrated salt media. A simple quantitative treatment shows that k = 8GC/SAT decreases from a value of 4.14 (in 0.01MN(a)) to 1.86 (in 3M Na) and from 4.18 (in 0.01M Cs) to 1.42 (in 3M Cs). SAT is the equilibrium constant for the formation of a hydrogen-bonded AT base pair from a pair of unbonded bases at the junction between a helical region and a denatured region and SGC is the like constant for the formation of a GC base pair. These results corroborate our previous findings of a strongly reduced composition dependence of the negative logarithm of the methylmercuric hydroxide concentration necessary to produce 50% denaturation when the helix-coil transition of DNA is studied in concentrated Cs(s)SO(4)(ultracentrifugation) instead of in dilute N(a)(2)SO(4) (ultraviolet spectrophotometry).  相似文献   

17.
A study was made of biological and physico-chemical properties of phages of Bac. thuringiensis as well as of a number of parameters of nucleic acids isolated from these phages. The phages contain double-stranded DNA. Molecular weights of DNA from three phages--Tg9, Tg10 and Tg13 have been determined by two independent methods: by measuring the contour length of DNA, from the sedimentation constant and for DNA of phage Tg10 also by endonuclease EcRI hydrolysis. These methods gave similar results. On the basis of the temperature of DNA melting the content of GC pairs was found equal to 37.9, 33.4 and 35.1 mole% for DNA's of phage Tg9, Tg10 and Tg13, respectively. On the basis of measuring the intervals of DNA melting a conclusion was made that DNA of the Tg9 and Tg13 phage has a random distribution of base pairs, while DNA of phage Tg10 displays some clustering of base distribution along the molecule. It has been shown that restrictase EcoRI hydrolyses phage Tg10 DNA into 6 fragments of different molecular weights; DNA's of Tg9 and Tg13 phages are not hydrolyzed. A possibility of existance of phage Tg10 DNA in linear and ring forms has been established. The characteristics of phage particles have been determined by electron microscopy.  相似文献   

18.
The base pair lifetimes and apparent dissociation constants of a 21 base DNA hairpin and an analog possessing a disulfide cross-link bridging the 3'- and 5'-terminal bases were determined by measuring imino proton exchange rates as a function of exchange catalyst concentration and temperature. A comparison of the lifetimes and apparent dissociation constants for corresponding base pairs of the two hairpins indicates that the cross-link neither increases the number of base pairs involved in fraying nor alters the lifetime, dissociation constant, or the opened structure from which exchange occurs for the base pairs that are not frayed. The cross-link does, however, stabilize the frayed penultimate base pair of the stem duplex. Significantly, it appears that the disulfide cross-link is more effective at preventing fraying of the penultimate base pair than is the 5 base hairpin loop. Because this disulfide cross-link can be incorporated site specifically, and does not adversely affect static or dynamic properties of DNA, it should prove very useful in studies of nucleic acid structure and function.  相似文献   

19.
Hofr C  Brabec V 《Biopolymers》2005,77(4):222-229
The effect of the location of the interstrand cross-link formed by trans-diamminedichloroplatinum(II) (transplatin) on the thermal stability and energetics of 15-mer DNA duplex has been investigated. The duplex containing single, site-specific cross-link, thermodynamically equivalent model structures (hairpins) and nonmodified duplexes were characterized by differential scanning calorimetry, temperature-dependent uv absorption, and circular dichroism. The results demonstrate that the formation of the interstrand cross-link of transplatin does not affect pronouncedly thermodynamic stability of DNA: the cross-link induces no marked changes not only in enthalpy, but also in "reduced" (concentration independent) monomolecular transition entropy. These results are consistent with the previous observations that interstrand cross-links of transplatin structurally perturb DNA only to a relatively small extent. On the other hand, constraining the duplex with the interstrand cross-link of transplatin results in a significant increase in thermal stability that is primarily due to entropic effects: the cross-link reduces the molecularity of the oligomer system from bimolecular to monomolecular. Importantly, the position of the interstrand cross-link within the duplex modulates cooperativity of the melting transition of the duplex and consequently its thermal stability.  相似文献   

20.
Binding to DNA's of the non-intercalative ligands SN-6999 and SN-18071 has been studied by means of circular dichroism, UV absorption, thermal melting and for SN-6999 by viscosity measurements. Both antitumour drugs show a preference for dA.dT rich DNA's, but the base pair selectivity of SN-18071 is lower as indicated by some affinity to dG.dC containing duplex DNA. The dA.dT base pair specificity of SN-6999 is comparable to that of netropsin. It forms very stable complexes with dA.dT containing duplex DNA and competes with netropsin binding on DNA. The ligands SN-18071 and pentamidine are totally released from their complexes with poly(dA-dT).poly(dA-dT) by competitive netropsin binding. The results demonstrate that hydrogen bonding capacity of the ligand in addition to other factors strongly contribute to the base sequence specificity in the recognition process of the ligand with DNA. A binding model of SN-6999 with five dA.dT pairs in the minor groove of B-DNA is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号