首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryopreservation of fetal skin is improved by extracellular trehalose   总被引:7,自引:0,他引:7  
Erdag G  Eroglu A  Morgan J  Toner M 《Cryobiology》2002,44(3):167-228
In this study, we tested a non-permeating cryoprotectant, trehalose, in combination with dimethyl sulfoxide (Me(2)SO) in the cryopreservation of human fetal skin and compared it to Me(2)SO and glycerol, protocols that are routinely used by skin banks. The viability of fetal skin from four groups (fresh, and cryopreserved with glycerol, Me(2)SO, or trehalose/Me(2)SO) were evaluated using an in vitro membrane integrity assay and by transplantation to immunodeficient mice. The membrane integrity assay showed a 90% integrity in fresh, unfrozen fetal skin. The number of intact cells dropped to 23 and 44% in fetal skin cryopreserved with glycerol and Me(2)SO, respectively. When trehalose was added to the cryopreservation medium containing Me(2)SO, the membrane integrity rose to 65%. When transplanted to immunodeficient mice, fetal skin cryopreserved with trehalose/Me(2)SO showed a graft performance indistinguishable from fresh unfrozen fetal skin and strikingly better graft take than that of fetal skin cryopreserved with Me(2)SO or glycerol only. These results suggest that cryopreservation protocols routinely used the skin banks can be improved by combining sugars such as trehalose with a permeating cryoprotectant.  相似文献   

2.
3.
The aim of this study was to compare the viability of human osteoblasts cryopreserved with Me2SO to that of fresh human iliac cancellous bone using cell culture techniques. Osteoblasts were obtained by spontaneous outgrowth of human iliac cancellous bone specimens in experiment I. In experiment II, human iliac cancellous bone was frozen with 10% Me2SO at -80 degrees C for 2 weeks and osteoblasts grew spontaneously after thawing at 37 degrees C by removing Me2SO with sucrose. The cells were grown in culture flasks containing DMEM as a culture medium, supplemented with 10% fetal calf serum. They were kept at 37 degrees C in a humidified atmosphere of 95% air and 5% CO2. Cells from the second passage were plated at a density of 5 times 10(3) cells/cm2 in 24-well plates. For detection of viability and differentiation, WST-1 assay, determination of alkaline phosphatase activity, concentration of procollagen I peptide, concentration of osteocalcin, and indirect immunofluorescence for osteopontin, collagen type I, integrin beta1, and fibronectin were applied. Experiments were conducted at four stages of confluence (days 4, 7, 14, and 21 after plating the cells). Based on the results of this study, we conclude that osteoblast-like cells survived cryopreservation and synthesized a range of markers that were consistent with this cell type.  相似文献   

4.
Cryopreservation of tissue engineered products by maintaining their structure and function is a prerequisite for large-scale clinical applications. In this study, we examined the feasibility of cryopreservation of tissue engineered bone (TEB) composed of osteo-induced canine bone marrow mesenchymal stem cells (cBMSCs) and partially demineralized bone matrix (pDBM) scaffold by vitrification. A novel vitreous solution named as VS442 containing 40% dimethyl-sulfoxide (DMSO), 40% EuroCollins (EC) solution and 20% basic culture medium (BCM) was developed. After being cultured in vitro for 8 days, cell/scaffold complex in VS442 was subjected to vitreous preservation for 7 days and 3 months, respectively. Cell viability, proliferation and osteogenic differentiation of cBMSCs in TEB after vitreous cryopreservation were examined with parallel comparisons being made with those cryopreserved in VS55 vitreous solution. Compared with that cryopreserved in VS55, cell viability and subsequent proliferative ability of TEB in VS442 after being rewarmed were significantly higher as detected by live/dead staining and DNA assay. The level of alkaline phosphatase (ALP) expression and osteocalcin (OCN) deposition in VS442 preserved TEB was also higher than those in the VS55 group since 3 days post-rewarm. Both cell viability and osteogenic capability of the VS55 group were found to be declined to a negligible level within 15 days post-rewarm. Furthermore, it was observed that extending the preservation of TEB in VS442 to 3 months did not render any significant effect on its survival and osteogenic potential. Thus, the newly developed VS442 vitreous solution was demonstrated to be more efficient in maintaining cellular viability and osteogenic function for vitreous cryopreservation of TEB over VS55.  相似文献   

5.
Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me2SO), but at 37 °C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me2SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me2SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells.  相似文献   

6.
Long term cryopreservation of tissue engineering constructs is of paramount importance to meet off-the shelf requirements for medical applications. In the present study, the effect of cryopreservation using natural osmolytes such as trehalose and ectoin with and without conventional Me2SO on the cryopreservation of tissue engineered constructs (TECs) was evaluated. MSCs derived from umbilical cord were seeded on electrospun nanofibrous silk fibroin scaffolds and cultured to develop TECs. TECs were subjected to controlled rate freezing using nine different freezing solutions. Among these, freezing medium consisting of natural osmolytes like trehalose (40 mM), ectoin (40 mM), catalase (100 μg) as antioxidant and Me2SO (2.5%) was found to be the most effective. Optimality of the chosen cryoprotectants was confirmed by cell viability (PI live/dead staining), cell proliferation (MTT assay), microstructure analysis (SEM), membrane integrity (confocal microscopy) and in vitro osteogenic differentiation (ALP assay, RT-PCR and histology) study carried out with post-thaw cryopreserved TECs. The mechanical integrity of the cryopreserved scaffold was found to be unaltered.  相似文献   

7.
The cryopreservation protocol we use for arterial reconstructive surgery has been studied to evaluate smooth muscle cell (SMC) structural integrity and viability before implantation. Samples of human thoracic aortas (HTA) were harvested from five multi-organ donors. Sampling included unfrozen and cryopreserved specimens. Cryopreservation was performed using RPMI with human albumin and 10% Me(2)SO in a controlled-rate freezing apparatus. Thawing was accomplished by submerging bags in a water bath (39 degrees C) followed by washings in cooled saline. In situ cell preservation as investigated by light and transmission electron microscopy showed that SMCs from cryopreserved HTA had nuclear and cytoplasmic changes. A TUNEL assay, performed to detect DNA fragmentation in situ, showed increased SMC nuclear positivity in cryopreserved HTA when compared to unfrozen samples. 7-AAD flow cytometry assay of cells derived from cryopreserved HTA showed that an average of 49+/-16% cells were unlabeled after cryopreservation. Organ cultures aimed to study cell ability to recover cryopreservation damage showed a decreasing number of SMCs from day 4 to day 15 in cryopreserved HTA. In conclusion, the cryopreservation protocol applied in this study induces irreversible damage of a significant fraction of arterial SMCs.  相似文献   

8.
Standard cryopreservation protocols recommend the use of dimethyl sulfoxide (Me2SO) at moderate temperatures only (room temperature, 4 degrees C) due to its toxicity which appears to be potentiated by warm temperatures. In the present study, we asked whether a transient increase in temperature during membrane sealing of cryovials affects the cell viability. We show here that the cell viability of hybridoma cells and Schwann cells was not reduced following membrane sealing of cryotubes. On the contrary, incubation of cells at 37 degrees C in Me2SO-containing medium prior to freezing significantly stimulated the viability of cryopreserved hybridoma cells, whereas the viability of Schwann cells remained unaltered. We conclude that the exposure of cells to Me2SO at elevated temperatures does not necessarily reduce cell viability and that contrary to this, cell type-specific, beneficial effects of Me2SO could be observed.  相似文献   

9.
Mesenchymal stem cells (MSCs) can be used for the regeneration of various tissues and cryopreservation of MSCs is so important for regenerative medicine. The purpose of this study was to evaluate the influences of cryopreservation on MSCs by use of a programmed freezer with a magnetic field (CAS freezer). MSCs were isolated from bone marrow of rat femora. The cells were frozen by a CAS freezer with 10% dimethyl sulfoxide (Me2SO) and cryopreserved for 7 days at a temperature of −150 °C. Immediately after thawing, the number of survived cells was counted. The cell proliferation also examined after 48 h culture. Next, MSCs were frozen by two different freezers; CAS freezer and a conventional programmed freezer without magnetic field. Then, osteogenic and adipogenic differentiations of cryopreserved cells were examined. As a result, survival and proliferation rates of MSCs were significantly higher in CAS freezer than in the non-magnetic freezer. Alizarin positive reaction, large amount of calcium quantification, and greater alkaline phosphatase activity were shown in both the non-cryopreserved and CAS groups after osteogenic differentiation. Moreover, Oil Red O staining positive reaction and high amount of PPARγ and FABP4 mRNAs were shown in both the non-cryopreserved and CAS groups after adipogenic differentiation. From these findings, it is shown that a CAS freezer can maintain high survival and proliferation rates of MSCs and maintain both adipogenic and osteogenic differentiation abilities. It is thus concluded that CAS freezer is available for cryopreservation of MSCs, which can be applied to various tissue regeneration.  相似文献   

10.
Yang H  Zhao H  Acker JP  Liu JZ  Akabutu J  McGann LE 《Cryobiology》2005,51(2):165-175
BACKGROUND: The effect of dimethyl sulfoxide (Me2SO) on enumeration of post-thaw CD45+ and CD34+ cells of umbilical cord blood (HPC-C) and mobilized peripheral blood (HPC-A) has not been systematically studied. METHODS: Cells from leukapheresis products from multiple myeloma patients and umbilical cord blood cells were suspended in 1, 2, 5, or 10% Me2SO for 20 min at 22 degrees C. Cells suspended in Me2SO were then immediately assessed or assessed following removal of Me2SO. In other samples, cells were suspended in 10% Me2SO, cooled slowly to -60 degrees C, stored at -150 degrees C for 48 h, then thawed. The thawed cells in 10% Me2SO were diluted to 1, 2, 5, or 10% Me2SO, held for 20 min at 22 degrees C and then immediately assessed or assessed after the removal of Me2SO. CD34+ cell viability was determined using a single platform flow cytometric absolute CD34+ cell count technique incorporating 7-AAD. RESULTS: The results indicate that after cryopreservation neither recovery of CD34+ cells nor viability of CD45+ and CD34+ cells from both post-thaw HPC-A and HPC-C were a function of the concentration of Me2SO. Without cryopreservation, when Me2SO is present recovery and viability of HPC-C CD34+ cells exposed to 10% Me2SO but not CD45+ cells were significantly decreased. Removing Me2SO by centrifugation significantly decreased the viability and recovery of CD34+ cells in both HPC-A and HPC-C before and after cryopreservation. DISCUSSION: To reflect the actual number of CD45+ cells and CD34+ cells infused into a patient, these results indicate that removal of Me2SO for assessment of CD34+ cell viability should only be performed if the HPC are infused after washing to remove Me2SO.  相似文献   

11.
The cryoprotectants dimethyl sulfoxide (Me2SO) and glycerol have been used for the cryopreservation of fetal rat pancreases but only Me2SO has been reported for the cryopreservation of adult rat islets. Since glycerol may be preferred to Me2SO for clinical use, this study was undertaken to compare the effectiveness of these cryoprotectants during the slow cooling of isolated adult rat islets. Islets of Langerhans prepared from the pancreases of WAG rats by collagenase digestion were stored at -196 degrees C after slow cooling (0.3 degrees C/min) to -70 degrees C in the presence of multimolar concentrations of either Me2SO or glycerol. Samples were rewarmed slowly (approximately 10 degrees C/min) and dilution of the cryoprotectant was achieved using medium containing sucrose. Function was assessed by determination of the time course of the glucose-induced insulin release during in vitro perifusion at 37 degrees C and also by isograft transplantation. Transplants were carried out by intraportal injection of a minimum of 1700 frozen and thawed islets into streptozotocin-induced diabetic recipients and tissue function was assessed by monitoring blood glucose levels and body weight changes. Without exception the islets frozen and thawed in the presence of glycerol failed to reduce high serum glucose levels of recipient rats and in vitro dynamic release curves showed to demonstrate a glucose-sensitive insulin release pattern. Reversal of the diabetic conditions was achieved in two of five animals receiving islets which had been frozen and thawed with 2 M Me2SO; and in one of three animals receiving islets cryopreserved with 3 M Me2SO. Nevertheless, perifusion studies showed that the pattern of insulin secretion from groups of cryopreserved islets which did show an ability to secrete insulin was atypical compared with that of untreated controls, suggesting that the tissue was altered or damaged in some way.  相似文献   

12.
Current methods of platelet storage are unsatisfactory because of the short shelf life of platelets and the rapid loss of platelet viability. We have developed a cryopreservation method that results in less damage from freezing and higher recovered function of platelets. Platelets were cryopreserved using a combination of epinephrine (EPN) and dimethyl sulfoxide (Me(2)SO) as cryoprotectants. The response of platelets to agonists was studied by flow cytometry and aggregation tests. Cryopreserving platelets with Me(2)SO decreased platelet annexin V binding due to freezing. The combination of EPN with Me(2)SO enhanced Me(2)SO cryoprotection and decreased platelet microparticle generation, suggesting that cryopreserving platelets using this combination is associated with increased platelet integrity. Platelet cryopreservation with an Me(2)SO/EPN combination also increased platelet aggregability, which was demonstrated by decreasing the lag phase and increasing the aggregation density to 66.39% +/- 6.6 that of fresh platelet-rich plasmas. We conclude that adding EPN as a combined cryoprotectant improves the quality of Me(2)SO-frozen platelets. As a method of aggregation of cryopreserved platelets, this method is comparable to that of normal fresh platelets and may improve the conditions for platelet transfusion.  相似文献   

13.
Recent advances in cell-based therapies require new approaches for cell cryopreservation, capable of dealing with large number of samples and providing specific conditions for each cell type. Reduction of sample volume from the commonly used 1 mL to 25 microL in 30-well micro-cryosubstrates improves cryopreservation by allowing automation, data handling and access to individual wells without thawing the whole cryosubstrate. This system was evaluated for the storage of Caco-2 colon adenocarcinoma cells, which differentiate spontaneously after long-term culture. The impact of the cryosample small volume upon post-thawing membrane integrity of the cells and their capacity to proliferate and differentiate was studied. Two different cryoprotectants commonly employed, dimethyl sulfoxide (Me(2)SO) and glycerol, were evaluated as well as the possibility of decreasing their concentration from the 10% concentration, usually used, down to 3% (v/v). The process automation by pipette robotic addition of the cryoprotectant to the micro-cryosubstrates was also evaluated. The micro-cryosubstrates have proven to be at least as efficient as typical 1 mL cryovials for cryopreservation of Caco-2 cells using either Me(2)SO or glycerol. Compared to the manual process, the automatic addition of glycerol to the micro-cryosubstrates allowed higher cell viabilities after thawing while with Me(2)SO no significant changes were observed. Me(2)SO has shown to be more effective than glycerol in maintaining high post-thaw cell membrane integrity, either in micro-cryosubstrates or cryovials, for any of the concentrations tested. The ability of Me(2)SO in maintaining high cell membrane integrity post-thawing was confirmed by long-term (up to 22 days) proliferation and differentiation studies performed with cells cultured immediately after thawing.  相似文献   

14.
Wang X  Hua TC  Sun DW  Liu B  Yang G  Cao Y 《Cryobiology》2007,55(1):60-65
Cryopreservation of tissue-engineered human dermal replacement plays an important role in skin tissue engineering and skin banking. With the inspection of electronic scanning microscope and viability evaluation by Trypan Blue staining assay and the tetrazolium salt, MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, this study investigated the toxicity of Me(2)SO to dermal fibroblasts and effects of cryoprotectant concentration and cooling rate on the viability of dermal replacement. The results demonstrated that the Me(2)SO toxicity to fibroblasts was affected by the exposure time, temperature, and concentration. Furthermore adding cryoprotectant solution at low temperature of 4 degrees C significantly reduced the toxic effect on the tissue-engineered dermal equivalent. An optimal cryopreservation protocol consisting of cooling rate at 1 degrees Cmin(-1) in 10% (V/V) Me(2)SO was derived, with the viability of studied dermal equivalent treated by this protocol being 75% of that of fresh control. The micrograph obtained by electronic scanning microscope also confirmed this result.  相似文献   

15.
The necessary first step in successful organ cryopreservation will be the maintenance of endothelial cell integrity during perfusion of high concentrations of cryoprotective agents (CPAs). In this report we compare the effects of incubation on cultured porcine endothelial cells at 10 degrees C for 1 h with the CPAs glycerol, dimethyl sulfoxide (Me2SO), ethanediol (EG), and propane-1,2-diol (PG) in the vehicle solutions RPS-2 (high potassium, high glucose) and HP-5NP (low potassium, high sodium), both with and without added colloids. Tritiated adenine uptake and acid phosphatase estimation of cell number were used as indicators of cell viability. HP-5NP was superior to RPS-2 except with Me2SO when the differences in viability were not significant. Adding Haemaccel to HP-5NP improved the results, but adding albumin to RPS-2 was of no significant benefit. Osmotic stress appeared to be the major problem with glycerols use. Beyond 3.0 M the toxicity of Me2SO increased dramatically but it could not be determined if this was osmotic or chemical toxicity. PG was remarkably well tolerated to 3.0 M but a sharp decrease in cell viability beyond this concentration suggests that PG may be most useful with mixtures of other CPAs. Overall, EG appeared to be the least toxic CPA and in the context of vascular preservation warrants further investigation.  相似文献   

16.
Using the current blood bank storage conditions at 22 degrees C, the viability and function of human platelets can be maintained for only 5 days. This does not allow for the necessary and extensive banking of platelets needed to treat patients afflicted with thrombocytopenia, a side effect of many invasive surgeries such as cardiopulmonary bypass or bone marrow transplantation. The development of optimal techniques for long-term cryopreservation and banking of human platelets would provide the ability to greatly extend the viable life of the platelet and would fulfill an increasing and urgent need in many clinical applications. To determine the optimal techniques for platelet preservation, the expression of an activation marker, phosphatidylserine, on the platelet membrane during storage at 22 and 8 degrees C as well as during the different freezing preservation processes was examined using flow cytometry and annexin V binding assay. Human platelets were identified by both CD41 and light scatter in flow cytometry. In cryopreservation experiments, effects of the following factors on platelet activation were evaluated: (a) cryoprotective agents (CPAs) type: dimethyl sulfoxide (Me2SO), ethylene glycol (EG), and propylene glycol (PG), (b) CPA concentration ranging from 0 to 3 M, and (c) ending temperatures of a slow cooling process at -1 degrees C/min. Our results demonstrated that (a) approximately 50% of platelets were activated on days 7 and 16 at 22 and 8 degrees C, respectively; (b) platelets were not significantly activated after 30-min exposure to 1 M Me2SO, EG, and PG at 22 degrees C, respectively, and (c) there was a significant difference in cryoprotective efficacy among these three CPAs in preventing platelets from cryoinjury. After being cooled to -10 degrees C, 74% of the cryopreserved platelets survived (nonactivated) in 1 M Me2SO solution, while in 1 M EG and 1 M PG solutions, 62 and 42% of the platelets survived, respectively. Using the information that Me2SO consistently yields higher percentages of nonactivated platelets and does not seem to be cytotoxic to platelets for 30-min exposure time, this was found to be the optimal cryoprotective agent for platelets. In addition, significant Me2SO toxicity to platelets was not noted until Me2SO concentrations exceeded 2 M. Finally, a concentration of 1 M Me2SO proved to be the most effective at all cryopreservation ending temperatures tested (-10, -30, -60, and -196 degrees C). In conclusion, under the present experimental conditions, a storage temperature of 8 degrees C appeared to be much better than 22 degrees C. Although the potential chemical toxicity of 1 M Me2SO, EG, or PG is negligible, 1 M Me2SO was found to be optimum for cryopreservation of human platelets. PG has the least cryoprotective function for low-temperature platelet survival.  相似文献   

17.
The development of cryopreservation (CP) strategies has traditionally focused on the cellular chemo-osmometric characteristics attendant to the freeze-thaw process. This approach coupled with a limited understanding of cellular physiological and biochemical responses to the CP process often yields sub-optimal cell survival. Recently, we have reported on the benefits of the utilization of an intracellular-like preservation solution, HypoThermosol (HTS), as well as incorporating a molecular approach to improving CP outcome [In Vitro Cell. Dev. Biol. Anim. 36(4) (2000) 262]. We now report on the elucidation of a cryoprotective agent (CPA)-dependent survival limit (cap) associated with standard CP methodologies. We further demonstrate an elevation and shift in the CP cap through the utilization of HTS coupled with a reduction in CPA levels necessary to achieve "successful" cell preservation. METHODS: Human fibroblasts, keratinocytes, hepatic, and renal cells were cryopreserved in a standard fashion (approximately 1 degrees C min-1 cooling and storage in LN2) in culture media (serum-free) or HTS with varying levels of dimethyl sulfoxide (Me2SO). Samples were allowed to recover for 24-h prior to survival assessment. Survival was assessed using alamarBlue (metabolic activity indicator) and calcien-AM (membrane integrity stain) in comparison with non-frozen controls. RESULTS: (1) A limit in cell survival was identified following CP in media-based CP solutions yielding a cell-type specific CPA-dependent survival limit, (2) peak cell survival resulted in the identification of "optimal" Me2SO concentrations for CP of each cell type, (3) incorporation of HTS as the carrier medium at typical Me2SO concentrations substantially elevated survival, and (4) utilization of HTS allowed for the successful preservation of all systems examined at significantly reduced Me2SO levels. CONCLUSION: The data presented in this study illustrate that the utilization of HTS as the carrier medium during CP facilitated a significant improvement in efficacy at reduced Me2SO levels. Further, the utilization of HTS offers the potential for successful Me2SO-free CP. These findings may prove significant to the advancement in the development of cell-based clinical therapies by providing an improved biocompatible CP methodology.  相似文献   

18.
Mesenchymal stromal cells (MSCs) have been demonstrated to possess anti-inflammatory and antimicrobial properties and are of interest in biotechnologies that will require cryopreservation. Recently, MSC-like cells were isolated from colostrum and milk. We used an interrupted slow freezing procedure to examine cryoinjury incurred during slow cooling and rapid cooling of MSC-like cells from swine colostrum. Cells were loaded with either dimethyl sulfoxide (Me2SO) or glycerol, cooled to a nucleation temperature, ice-nucleated, and further cooled at 1 °C/min. At several temperatures along the cooling path, cells were either thawed directly, or plunged into liquid nitrogen for storage and later thawed. The pattern of direct-thaw and plunge-thaw responses was used to guide optimization of cryopreservation protocol parameters. We found that both 5% Me2SO (0.65 M, loaded for 15 min on ice) or 5% glycerol (0.55 M, loaded for 1 h at room temperature) yielded cells with high post-thaw membrane integrity when cells were cooled to at least −30 °C before being plunged into, and stored in, liquid nitrogen. Cells cultured post-thaw exhibited osteogenic differentiation similar to fresh unfrozen control. Fresh and cryopreserved MSC-like cells demonstrated antimicrobial activity against S. aureus. Also, the antimicrobial activity of cell-conditioned media was higher when both fresh and cryopreserved MSC-like cells were pre-exposed to S. aureus. Thus, we were able to demonstrate cryopreservation of colostrum-derived MSC-like cells using Me2SO or glycerol, and show that both cryoprotectants yield highly viable cells with osteogenic potential, but that cells cryopreserved with glycerol retain higher antimicrobial activity post-thaw.  相似文献   

19.
Drug metabolism and viability studies in cryopreserved rat hepatocytes   总被引:1,自引:0,他引:1  
Rat hepatocytes were cryopreserved optimally by freezing them at 1 degrees C/min to -80 degrees C in cryoprotectant medium containing either 20% (v/v) dimethylsulfoxide (Me2SO) and 25% (v/v) fetal calf serum in Leibowitz L15 medium (Me2SO cryoprotectant) or 25% (v/v) vitrification solution (containing Me2SO, acetamide, propylene glycol and polyethylene glycol) in Leibowitz L15 medium (VS25). The VS25 solution was superior for maintaining viability during short-term storage (24-48 hr) but was slightly toxic during longer storage periods (7 days). Although thawed cells were 40-50% viable on ice after cryopreservation, their viability fell rapidly during incubation in suspension at 37 degrees C. This decline in viability occurred more rapidly after freezing in Me2SO cryoprotectant than in VS25 and was associated with extensive intracellular damage and cell swelling. The loss in viability at 37 degrees C does not appear to be due to ice-crystal damage as it occurred in cells stored at -10 degrees C (above the freezing point of the cryoprotectants) and it may be due to temperature/osmotic shock. Both cryoprotectant media were equally efficient at preserving enzyme activities in the hepatocytes over 7 days at -80 degrees C. Cytochrome P450 and reduced glutathione content and the activities of the microsomal enzymes responsible for aminopyrine N-demethylation and epoxide hydrolysis were well maintained over 7 days storage. In contrast, the cytosolic enzymes glutathione-S-transferase and glutathione reductase were markedly labile during cryopreservation. Cytosolic enzymes may be more susceptible to ice-crystal damage, whereas the microsomal membrane may protect the enzymes which are embedded in it.  相似文献   

20.
Platelet cryopreservation using a trehalose and phosphate formulation   总被引:3,自引:0,他引:3  
Long-term storage of platelets is infeasible due to platelet activation at low temperatures. In an effort to address this problem, we evaluated the effectiveness of a formulation combining trehalose and phosphate in protecting platelet structure and function following cryopreservation. An annexin V binding assay was used to quantify the efficacy of the trehalose and phosphate formulation in suppressing platelet activation during cryopreservation. Of the platelets cryopreserved with the trehalose plus phosphate formulation, 23% +/- 1.2% were nonactivated, compared with 9.8% +/- 0.26% nonactivated following cryopreservation with only trehalose. The presence of both trehalose and phosphate in the cryopreservation medium is critical for cell survival and preincubation in trehalose plus phosphate solutions further enhances viability. The effectiveness of trehalose plus phosphate in preserving platelets in a nonactivated state is comparable to 6% dimethyl sulfoxide (Me(2)SO). Measurements of platelet metabolic activity using an alamarBlue assay also established that trehalose plus phosphate is superior to trehalose alone. Finally, platelets protected by the trehalose plus phosphate formulation exhibit similar aggregation response upon thrombin addition as fresh platelets, but an increase of cytosolic calcium concentration upon thrombin addition was not observed in the cryopreserved platelets. These results suggest that trehalose and phosphate protect several aspects of platelet structure and function during cryopreservation, including an intact plasma membrane, metabolic activity, and aggregation in response to thrombin, but not intracellular calcium release in response to thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号