首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dengue virus (DV) is a positive sense RNA virus replicating in the cytoplasm in membranous compartments that are induced by viral infection. The non-structural protein (NS) 4A is one of the least characterized DV proteins. It is highly hydrophobic with its C-terminal region (designated 2K fragment) serving as a signal sequence for the translocation of the adjacent NS4B into the endoplasmic reticulum (ER) lumen. In this report, we demonstrate that NS4A associates with membranes via 4 internal hydrophobic regions, which are all able to mediate membrane targeting of a cytosolic reporter protein. We also developed a model for the membrane topology of NS4A in which the N-terminal third of NS4A localizes to the cytoplasm, while the remaining part contains three transmembrane segments, with the C-terminal end localized in the ER lumen. Subcellular localization experiments in DV-infected cells revealed that NS4A resides primarily in ER-derived cytoplasmic dot-like structures that also contain dsRNA and other DV proteins, suggesting that NS4A is a component of the membrane-bound viral replication complex (RC). Interestingly, the individual expression of DV NS4A lacking the 2K fragment resulted in the induction of cytoplasmic membrane alterations resembling virus-induced structures, whereas expression of full-length NS4A does not induce comparable membrane alterations. Thus, proteolytic removal of the 2K peptide appears to be important for induction of membrane alterations that may harbor the viral RC. These results shed new light on the role of NS4A in the DV replication cycle and provide a model of how this protein induces membrane rearrangements and how this property may be regulated.  相似文献   

2.
T J Chambers  A Grakoui    C M Rice 《Journal of virology》1991,65(11):6042-6050
The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.  相似文献   

3.
Hepatitis C virus (HCV) NS4B protein is a transmembrane highly hydrophobic protein responsible for many key aspects of the viral replication process. The C-terminal part of NS4B is essential for replication and is a potential target for HCV replication inhibitors. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to the C-terminal domain of NS4B, NS4B(Cter). We show that NS4B(Cter) partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. NS4B(Cter) is located in a shallow position in the membrane but it is able to affect the lipid environment from the membrane surface down to the hydrophobic core. Our results identify the C-terminal region of the HCV NS4B protein as a membrane interacting domain, and therefore directly implicated in the HCV life cycle and possibly in the formation of the membranous web.  相似文献   

4.
Flavivirus proteins are produced by co- and posttranslational proteolytic processing of a large polyprotein by both host- and virus-encoded proteinases. The viral serine proteinase, which consists of NS2B and NS3, is responsible for cleavage of at least four dibasic sites (2A/2B, 2B/3, 3/4A, and 4B/5) in the nonstructural region. Since the amino acid sequence preceding NS4B shares characteristics with signal peptides used for translocation of nascent polypeptides into the lumen of the endoplasmic reticulum, it has been proposed that cleavage at the 4A/4B site is mediated by a cellular signal peptidase. In this report, cell-free translation and in vivo transient expression assays were used to study processing in the NS4 region of the yellow fever virus polyprotein. With a construct which contained NS4B preceded by 17 residues constituting the putative signal peptide (sig4B), membrane-dependent cleavage at the 4A/4B site was demonstrated in vitro. Surprisingly, processing of NS4A-4B was not observed in cell-free translation studies, and in vivo expression of several yellow fever virus polyproteins revealed that the 4A/4B cleavage occurred only during coexpression of NS2B and the proteinase domain of NS3. Examination of mutant derivatives of the NS3 proteinase domain demonstrated that cleavage at the 4A/4B site correlated with expression of an active NS2B-3 proteinase. From these results, we propose a model in which the signalase cleavage generating the N terminus of NS4B requires a prior NS2B-3 proteinase-mediated cleavage at a novel site (called the 4A/2K site) which is conserved among flaviviruses and located 23 residues upstream of the signalase site. In support of this model, mutations at the 4A/4B signalase site did not eliminate processing in the NS4 region. In contrast, substitutions at the 4A/2K site, which were engineered to block NS2B-3 proteinase-mediated cleavage, eliminated signalase cleavage at the 4A/4B site. In addition, the size of the 3(502)-4A product generated by trans processing of a truncated polyprotein, 3(502)-5(356), was consistent with cleavage at the 4A/2K site rather than at the downstream 4A/4B signalase site.  相似文献   

5.
The non‐structural protein 4B (NS4B) of the hepatitis C virus (HCV) is an endoplasmic reticulum (ER) membrane protein comprising two consecutive amphipathic α‐helical domains (AH1 and AH2). Its self‐oligomerization via the AH2 domain is required for the formation of the membranous web that is necessary for viral replication. Previously, we reported that the host‐encoded ER‐associated reticulon 3 (RTN3) protein is involved in the formation of the replication‐associated membranes of (+)RNA enteroviruses during viral replication. In this study, we demonstrated that the second transmembrane region of RTN3 competed for, and bound to, the AH2 domain of NS4B, thus abolishing NS4B self‐interaction and leading to the downregulation of viral replication. This interaction was mediated by two crucial residues, lysine 52 and tyrosine 63, of AH2, and was regulated by the AH1 domain. The silencing of RTN3 in Huh7 and AVA5 cells harbouring an HCV replicon enhanced the replication of HCV, which was counteracted by the overexpression of recombinant RTN3. The synthesis of viral RNA was also increased in siRNA‐transfected human primary hepatocytes infected with HCV derived from cell culture. Our results demonstrated that RTN3 acted as a restriction factor to limit the replication of HCV.  相似文献   

6.
Dengue virus (DENV) infection is a growing public health threat with more than one-third of the world's population at risk. Non-structural protein 4A (NS4A), one of the least characterized viral proteins, is a highly hydrophobic transmembrane protein thought to induce the membrane alterations that harbor the viral replication complex. The NS4A N-terminal (amino acids 1–48), has been proposed to contain an amphipathic α-helix (AH). Mutations (L6E; M10E) designed to reduce the amphipathic character of the predicted AH, abolished viral replication and reduced NS4A oligomerization. Nuclear magnetic resonance (NMR) spectroscopy was used to characterize the N-terminal cytoplasmic region (amino acids 1–48) of both wild type and mutant NS4A in the presence of SDS micelles. Binding of the two N-terminal NS4A peptides to liposomes was studied as a function of membrane curvature and lipid composition. The NS4A N-terminal was found to contain two AHs separated by a non-helical linker. The above mentioned mutations did not significantly affect the helical secondary structure of this domain. However, they reduced the affinity of the N-terminal NS4A domain for lipid membranes. Binding of wild type NS4A(1–48) to liposomes is highly dependent on membrane curvature.  相似文献   

7.
Proteins NS4A and NS4B from Dengue Virus (DENV) are highly hydrophobic transmembrane proteins which are responsible, at least in part, for the membrane arrangements leading to the formation of the viral replication complex, essential for the viral life cycle. In this work we have identified the membranotropic regions of DENV NS4A and NS4B proteins by performing an exhaustive study of membrane rupture induced by NS4A and NS4B peptide libraries on simple and complex model membranes as well as their ability to modulate the phospholipid phase transitions P(β')-L(α) of DMPC and L(β)-L(α)/L(α)-H(II) of DEPE. Protein NS4A presents three membrane active regions coincident with putative transmembrane segments, whereas NS4B presented up to nine membrane active regions, four of them presumably putative transmembrane segments. These data recognize the existence of different membrane-active segments on these proteins and support their role in the formation of the replication complex and therefore directly implicated in the DENV life cycle.  相似文献   

8.
A Cahour  B Falgout    C J Lai 《Journal of virology》1992,66(3):1535-1542
The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans.  相似文献   

9.
NS5A of the hepatitis C virus (HCV) is a highly phosphorylated protein involved in resistance against interferon and required most likely for replication of the viral genome. Phosphorylation of this protein is mediated by a cellular kinase(s) generating multiple proteins with different electrophoretic mobilities. In the case of the genotype 1b isolate HCV-J, in addition to the basal phosphorylated NS5A (designated pp56), a hyperphosphorylated form (pp58) was found on coexpression of NS4A (T. Kaneko, Y. Tanji, S. Satoh, M. Hijikata, S. Asabe, K. Kimura, and K. Shimotohno, Biochem. Biophys. Res. Commun. 205:320-326, 1994). Using a comparative analysis of two full-length genomes of genotype 1b, competent or defective for NS5A hyperphosphorylation, we investigated the requirements for this NS5A modification. We found that hyperphosphorylation occurs when NS5A is expressed as part of a continuous NS3-5A polyprotein but not when it is expressed on its own or trans complemented with one or several other viral proteins. Results obtained with chimeras of both genomes show that single amino acid substitutions within NS3 that do not affect polyprotein cleavage can enhance or reduce NS5A hyperphosphorylation. Furthermore, mutations in the central or carboxy-terminal NS4A domain as well as small deletions in NS4B can also reduce or block hyperphosphorylation without affecting polyprotein processing. These requirements most likely reflect the formation of a highly ordered NS3-5A multisubunit complex responsible for the differential phosphorylation of NS5A and probably also for modulation of its biological activities.  相似文献   

10.
Hepatitis C virus (HCV) is an important human pathogen, persistently infecting more than 170 million individuals worldwide. Studies of the HCV life cycle have become possible with the development of cell culture systems supporting the replication of viral RNA and the production of infectious virus. However, the exact functions of individual proteins, especially of nonstructural protein 4B (NS4B), remain poorly understood. NS4B triggers the formation of specific, vesicular membrane rearrangements, referred to as membranous webs, which have been reported to represent sites of HCV RNA replication. However, the mechanism of vesicle induction is not known. In this study, a panel of 15 mutants carrying substitutions in the highly conserved NS4B C-terminal domain was generated. Five mutations had only a minor effect on replication, but two of them enhanced assembly and release of infectious virus. Ten mutants were replication defective and used for selection of pseudoreversions. Most of the pseudoreversions also localized to the highly conserved NS4B C-terminal domain and were found to restore replication competence upon insertion into the corresponding primary mutant. Importantly, pseudoreversions restoring replication competence also restored heterotypic NS4B self-interaction, which was disrupted by the primary mutation. Finally, electron microscopy analyses of membrane alterations induced by NS4B mutants revealed striking morphological abnormalities, which were restored to wild-type morphology by the corresponding pseudoreversion. These findings demonstrate the important role of the C-terminal domain in NS4B self-interaction and the formation of functional HCV replication complexes.  相似文献   

11.
Dengue virus (DV) is a member of the family Flaviviridae. These positive strand RNA viruses encode a polyprotein that is processed in case of DV into 10 proteins. Although for most of these proteins distinct functions have been defined, this is less clear for the highly hydrophobic non-structural protein (NS) 4B. Despite its possible role as an antagonist of the interferon-induced antiviral response, this protein may play an additional more direct role for viral replication. In this study we determined the subcellular localization, membrane association, and membrane topology of DV NS4B. We found that NS4B resides primarily in cytoplasmic foci originating from the endoplasmic reticulum. NS4B colocalizes with NS3 and double-stranded RNA, an intermediate of viral replication, arguing that NS4B is part of the membrane-bound viral replication complex. Biochemical analysis revealed that NS4B is an integral membrane protein, and that its preceding 2K signal sequence is not required for this integration. We identified three membrane-spanning segments in the COOH-terminal part of NS4B that are sufficient to target a cytosolic marker protein to intracellular membranes. Furthermore, we established a membrane topology model of NS4B in which the NH2-terminal part of the protein is localized in the endoplasmic reticulum lumen, whereas the COOH-terminal part is composed of three trans-membrane domains with the COOH-terminal tail localized in the cytoplasm. This topology model provides a good starting point for a detailed investigation of the function of NS4B in the DV life cycle.  相似文献   

12.
NS4B protein from hepatitis C virus (HCV) is a highly hydrophobic protein inducing a rearrangement of endoplasmic reticulum membranes responsible of the HCV replication process. Different helical elements have been found in the N- and C- terminal domains of the protein, which seem to be responsible for many key aspects of the viral replication process. In this work we have carried out a study of the binding and interaction with model biomembranes of peptide NS4B(H1), patterned after segment H1, one of these C-terminal previously identified segments. We show that NS4B(H1) partitions into phospholipid membranes; its membrane activity is modulated by lipid composition, interacting preferentially with negatively charged phospholipids as well as with sphingomyelin. Furthermore, the change in its sequence prevents the resulting peptide from interacting with the membrane. These data would support its role in the interaction of NS4B with the membrane and suggest that the region where this peptide resides could be involved in the membrane alteration which must occur in the HCV replication and/or assembly process.  相似文献   

13.
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.  相似文献   

14.
C Lin  B M Prgai  A Grakoui  J Xu    C M Rice 《Journal of virology》1994,68(12):8147-8157
The hepatitis C virus H strain (HCV-H) polyprotein is cleaved to produce at least 10 distinct products, in the order of NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. An HCV-encoded serine proteinase activity in NS3 is required for cleavage at four sites in the nonstructural region (3/4A, 4A/4B, 4B/5A, and 5A/5B). In this report, the HCV-H serine proteinase domain (the N-terminal 181 residues of NS3) was tested for its ability to mediate trans-processing at these four sites. By using an NS3-5B substrate with an inactivated serine proteinase domain, trans-cleavage was observed at all sites except for the 3/4A site. Deletion of the inactive proteinase domain led to efficient trans-processing at the 3/4A site. Smaller NS4A-4B and NS5A-5B substrates were processed efficiently in trans; however, cleavage of an NS4B-5A substrate occurred only when the serine proteinase domain was coexpressed with NS4A. Only the N-terminal 35 amino acids of NS4A were required for this activity. Thus, while NS4A appears to be absolutely required for trans-cleavage at the 4B/5A site, it is not an essential cofactor for serine proteinase activity. To begin to examine the conservation (or divergence) of serine proteinase-substrate interactions during HCV evolution, we demonstrated that similar trans-processing occurred when the proteinase domains and substrates were derived from two different HCV subtypes. These results are encouraging for the development of broadly effective HCV serine proteinase inhibitors as antiviral agents. Finally, the kinetics of processing in the nonstructural region was examined by pulse-chase analysis. NS3-containing precursors were absent, indicating that the 2/3 and 3/4A cleavages occur rapidly. In contrast, processing of the NS4A-5B region appeared to involve multiple pathways, and significant quantities of various polyprotein intermediates were observed. NS5B, the putative RNA polymerase, was found to be significantly less stable than the other mature cleavage products. This instability appeared to be an inherent property of NS5B and did not depend on expression of other viral polypeptides, including the HCV-encoded proteinases.  相似文献   

15.
RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication.  相似文献   

16.
The determinants of cleavage site specificity of the yellow fever virus (YF) NS3 proteinase for its 2B/3 cleavage site have been studied by using site-directed mutagenesis. Mutations at residues within the GARR decreases S sequence were tested for effects on cis cleavage of an NS2B-3(181) polyprotein during cell-free translation. At the P1 position, only the conservative substitution R-->K exhibited significant levels of cleavage. Conservative and nonconservative substitutions were tolerated at the P1' and P2 positions, resulting in intermediate levels of cleavage. Substitutions at the P3 and P4 positions had no effects on cleavage efficiency in the cell-free assay. Processing at other dibasic sites was studied by using transient expression of a sig2A-5(356) polyprotein. Cleavage at the 2B/3 site was not required for processing at downstream sites. However, increased accumulation of high-molecular-weight viral polyproteins was generally observed for mutations which reduced cleavage efficiency at the 2B/3 site. Several mutations were also tested for their effects on viral replication. Virus was not recovered from substitutions which blocked or substantially reduced cleavage in the cell-free assay, suggesting that efficient cleavage at the 2B/3 site is required for flavivirus replication.  相似文献   

17.
The need to identify anti-Flaviviridae agents has resulted in intensive biochemical study of recombinant nonstructural (NS) viral proteases; however, experimentation on viral protease-associated replication complexes in host cells is extremely challenging and therefore limited. It remains to be determined if membrane anchoring and/or association to replicase-membrane complexes of proteases, such as hepatitis C virus (HCV) NS3-4A, plays a regulatory role in the substrate selectivity of the protease. In this study, we examined trans-endoproteolytic cleavage activities of membrane-anchored and replicase-associated NS3-4A using an internally consistent set of membrane-anchored protein substrates mimicking all known HCV NS3-4A polyprotein cleavage sequences. Interestingly, we detected cleavage of substrates encoding for the NS4B/NS5A and NS5A/NS5B junctions, but not for the NS3/NS4A and NS4A/NS4B substrates. This stringent substrate recognition profile was also observed for the replicase-associated NS3-4A and is not genotype-specific. Our study also reveals that ER-anchoring of the substrate is critical for its cleavage by NS3-4A. Importantly, we demonstrate that in HCV-infected cells, the NS4B/NS5A substrate was cleaved efficiently. The unique ability of our membrane-anchored substrates to detect NS3-4A activity alone, in replication complexes, or within the course of infection, shows them to be powerful tools for drug discovery and for the study of HCV biology.  相似文献   

18.
B Falgout  R H Miller    C J Lai 《Journal of virology》1993,67(4):2034-2042
Most proteolytic cleavages in the nonstructural protein (NS) region of the flavivirus polyprotein are effected by a virus-encoded protease composed of two viral proteins, NS2B and NS3. The N-terminal 180-amino-acid-region of NS3 includes sequences with homology to the active sites of serine proteases, and there is evidence that this portion of NS3 can mediate proteolytic cleavages. In contrast, nothing is known about required sequences in NS2B. We constructed a series of deletion mutations in the NS2B portion of plasmid pTM/NS2B-30% NS3, which expresses dengue virus type 4 (DEN4) cDNA encoding NS2B and the N-terminal 184 residues of NS3 from the T7 RNA polymerase promoter. Mutant or wild-type plasmids were transfected into cells that had been infected with a recombinant vaccinia virus expressing T7 RNA polymerase, and the protease activities of the expressed polyproteins were assayed by examining the extent of self-cleavage at the NS2B-NS3 junction. The results identify a 40-amino-acid segment of NS2B (DEN4 amino acids 1396 to 1435) essential for protease activity. A hydrophobicity profile of DEN4 NS2B predicts this segment constitutes a hydrophilic domain surrounded by hydrophobic regions. Hydrophobicity profiles of the NS2B proteins of other flaviviruses show similar patterns. Amino acid sequence alignment of this domain of DEN4 NS2B with comparable regions of other proteins of flaviviruses indicates significant sequence conservation, especially at the N-terminal end. These observations suggest that the central hydrophilic domain of NS2B of these other flaviviruses will also prove to be essential for protease activity.  相似文献   

19.
Crystal structure of the NS3 protease-helicase from dengue virus   总被引:2,自引:0,他引:2  
Several flaviviruses are important human pathogens, including dengue virus, a disease against which neither a vaccine nor specific antiviral therapies currently exist. During infection, the flavivirus RNA genome is translated into a polyprotein, which is cleaved into several components. Nonstructural protein 3 (NS3) carries out enzymatic reactions essential for viral replication, including proteolysis of the polyprotein through its serine protease N-terminal domain, with a segment of 40 residues from the NS2B protein acting as a cofactor. The ATPase/helicase domain is located at the C terminus of NS3. Atomic structures are available for these domains separately, but a molecular view of the full-length flavivirus NS3 polypeptide is still lacking. We report a crystallographic structure of a complete NS3 molecule fused to 18 residues of the NS2B cofactor at a resolution of 3.15 Å. The relative orientation between the protease and helicase domains is drastically different than the single-chain NS3-NS4A molecule from hepatitis C virus, which was caught in the act of cis cleavage at the NS3-NS4A junction. Here, the protease domain sits beneath the ATP binding site, giving the molecule an elongated shape. The domain arrangement found in the crystal structure fits nicely into an envelope determined ab initio using small-angle X-ray scattering experiments in solution, suggesting a stable molecular conformation. We propose that a basic patch located at the surface of the protease domain increases the affinity for nucleotides and could also participate in RNA binding, explaining the higher unwinding activity of the full-length enzyme compared to that of the isolated helicase domain.  相似文献   

20.
Phosphatidylinositol 4-kinase III alpha (PI4KA) is an essential cofactor of hepatitis C virus (HCV) replication. We initiated this study to determine whether HCV directly engages PI4KA to establish its replication. PI4KA kinase activity was found to be absolutely required for HCV replication using a small interfering RNA transcomplementation assay. Moreover, HCV infection or subgenomic HCV replicons produced a dramatic increase in phosphatidylinositol 4-phosphate (PI4P) accumulation throughout the cytoplasm, which partially colocalized with the endoplasmic reticulum. In contrast, the majority of PI4P accumulated at the Golgi bodies in uninfected cells. The increase in PI4P was not observed after infection with UV-inactivated HCV and did not reflect changes in PI4KA protein or RNA abundance. In an analysis of U2OS cell lines with inducible expression of the HCV polyprotein or individual viral proteins, viral polyprotein expression resulted in enhanced cytoplasmic PI4P production. Increased PI4P accumulation following HCV protein expression was precluded by silencing the expression of PI4KA, but not the related PI4KB. Silencing PI4KA also resulted in aberrant agglomeration of viral replicase proteins, including NS5A, NS5B, and NS3. NS5A alone, but not other viral proteins, stimulated PI4P production in vivo and enhanced PI4KA kinase activity in vitro. Lastly, PI4KA coimmunoprecipitated with NS5A from infected Huh-7.5 cells and from dually transfected 293T cells. In sum, these results suggest that HCV NS5A modulation of PI4KA-dependent PI4P production influences replication complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号