首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Eleven independent GUS-positive hairy roots were induced by co-cultivation of leaf explants of Antirrhinum majus L. with Agrobacterium tumefaciens strain GV2260 containing the rol type MAT vector pNPI702. The MAT vector pNPI702 possesses a GUS gene under the 35 S promoter and a removal element in which the 7.6-kb DNA fragments containing the rolA, B, C and D genes and recombinase gene with a 35 S promoter are located between two directly oriented recombination site sequences. A total of 326 adventitious shoots regenerated from 11 independent hairy root lines cultured on 1/2MS medium without plant growth regulators at 25  °C under a 16/8 h (day/night) photoperiod after 8 weeks of stock-culture of hairy roots and 4 weeks of culture of the green segments of hairy roots. Regenerated plants showed either a normal or dwarf morphology. GUS activity was observed in the hairy roots and regenerated shoots. The presence of the GUS gene in the regenerated, morphologically normal plants was confirmed by PCR analysis. Received: 28 February 2000 / Revision received: 18 August 2000 / Accepted: 22 August 2000  相似文献   

2.
 The expression of the Arabidopsis heat-shock protein (HSP) 18.2 promoter β-d-glucuronidase (GUS) chimera gene was studied in various organs of the transgenic Nicotiana plumbaginifolia during the recovery phase at normal temperatures (20–22  °C) following heat-shock (HS) treatment. The optimum HS temperature for GUS activity in the anthers, petals and capsules was 42  °C, but in immature seeds and the placentas of capsules it was 36  °C and 39  °C, respectively. No apparent GUS activity was observed in any organs except for dry seeds after HS at 45  °C, although the activity in dry seeds was apparent even after HS at 48  °C. After HS at 42  °C, GUS activity in the flower tissues was the highest before anthesis and declined thereafter. Received: 13 January 1998 / Revision received: 25 January 1999 / Accepted: 3 March 1999  相似文献   

3.
Summary Two different promoters, a cauliflower mosaic virus (CaMV) 35S promoter with a 5′-untranslated leader sequence from alfalfa mosaic virus RNA4 (designated as CaMV 35S/AMV) and an E-8 fruit-ripening-specific promoter, were compared to evaluate their effects on expression of the uidA reporter gene in transgenic tomato plants. In order to generate sufficient numbers of transgenic tomato plants, both a reliable regeneration system and an efficient Agrobacterium transformation protocol were developed using 8-d-old cotyledons of tomato (Lycopersicon ecsulentum Mill. cv. Swifty Belle). Two sets of constructs, both derivatives of the binary vector pBI121, were used in transformation of tomato whereby the uidA gene was driven either by the CaMV 35S/AMV or the E-8 fruit-ripening-specific promoter. Southern blot hybridization confirmed the stable integration of the chimeric uidA gene into the tomato genome. Fruit and leaf tissues were collected from T0 and T1 plants, and assayed for β-glucuronidase (GUS) enzyme activity. As expected, both vegetative and fruit tissues of transgenic plants carrying the uidA gene under the control of CaMV 35S/AMV showed varying levels of GUS activity, while no expression was observed in vegetative tissues of transgenic plants carrying the uidA gene driven by the E-8 promoter. All fruits from transgenic plants produced with both sets of constructs displayed expression of the uidA gene. However, when this reporter gene was driven by the CaMV 35S/AMV, GUS activity levels were significantly higher than when it was driven by the E-8 fruit-specific promoter. The presence/absence of the uidA gene in T1 plants segregated in a 3∶1 Mendelian ratio.  相似文献   

4.
 The expression of the Arabidopsis heat shock protein (HSP) 18.2 promoter-β-d-glucuronidase (GUS) chimera gene was investigated in transgenic Nicotiana plumbaginifolia plants during the recovery phase at normal temperatures (20–22  °C) after a heat shock (HS) treatment. GUS activity increased during the recovery phase after HS at 42  °C for 2 h, and maximal GUS activity was observed after 12 h at normal temperatures, at levels 50–100 times higher than the activity immediately after HS. After HS at 44  °C, little GUS activity was observed during the first 20–24 h at normal temperatures, but the activity increased gradually thereafter, to reach a maximum at 40–50 h. After HS at 45  °C, no GUS activity was observed throughout the experimental period. RT-PCR analysis showed that GUS mRNA remained for 10 h after a 2-h HS at 42  °C and for 40 h after a 2-h HS at 44  °C. These findings demonstrate that brief HS treatment, especially at a sublethal temperature, induces a long-term accumulation of HSP-GUS mRNA during the recovery phase. Received: 31 July 1998 / Revision received: 4 November 1998 / Accepted: 19 February 1999  相似文献   

5.
6.
Tissue-specific expression of the ORF13 promoter from Agrobacterium rhizogenes 8196 was assessed throughout the development of transgenic tobacco plants using a GUS reporter gene. ORF13 exhibited high activity in roots but with different patterns of expression. The activity of the ORF13 promoter in vascular tissues increased from the base to the tip of the stem. The ORF13 promoter is wound inducible in a limited area adjacent to the wound site. The time course of wound induction of ORF13 in transgenic tobacco containing an ORF13 promoter-GUS translational fusion was similar to that previously described for genes involved in plant defense responses. A series of 5′ deletions of the ORF13 promoter fused to the β-glucuronidase gene was examined for expression in roots and leaves of transgenic plants. Cis-acting elements that modulate quantitative expression of the transgene after wounding were detected. Received: 11 July 1996 / Accepted: 19 November 1996  相似文献   

7.
Functional analysis of BnMAR element in transgenic tobacco plants   总被引:1,自引:0,他引:1  
Scaffold/matrix attachment regions (S/MARs) are defined as genomic DNA sequences, located at the physical boundaries of chromatin loops. Previous reports suggest that S/MARs elements may increase and stabilize the expression of transgene. In this study, DNA sequence with MAR characteristics has been isolated from B. napus . The BnMARs sequence was used to flank the CaMV35S-GUS-NOS expression cassette within the T-DNA of the plant expression vector pPZP212. These constructs were introduced into tobacco plants, respectively and the GUS reporter gene expression was investigated in stably transformed plants. When the forward BnMARs sequence was inserted into the upstream of CaMV35S promoter, the average GUS activities were much higher than those without BnMARs in transgenic tobacco. The GUS expression of M(+)35S:GUS, M(+)35S:GUSM(+) and M(+)35S:GUSM(−) constructs increased average 1.0-fold, with or without BnMARs located downstream of NOS. The GUS expression would not be affected when reverse BnMARs sequence inserted whether upstream of CaMV35S promoter or downstream of NOS. The GUS expression was affected a little when reverse BnMARs sequence was inserted the downstream of NOS and BnMARs could not act by serving as of promoter. The results showed that the presence of forward BnMARs sequence does have an obvious impact on enhancing downstream gene expression and its effect is unidirectional.  相似文献   

8.
9.
拟南芥冷诱导型启动子CBF 3的克隆及活性检测   总被引:1,自引:0,他引:1  
目的:构建冷诱导型启动子CBF3基因的植物表达载体,并将其转入烟草。方法:以拟南芥基因组DNA为模板,通过特异PCR扩增,克隆冷诱导表达启动子CBF3(C-repeat binding factor)。用CBF3启动子替换pBI121载体上的35S启动子构建新的载体pBC-GUS,通过农杆菌介导的叶盘法转化烟草。结果:获得了转基因烟草,转基因烟草的GUS组织化学染色及PCR分析结果表明,在低温诱导下,CBF3启动子可增强GUS基因表达。结论:CBF3启动子可应用于植物抗冷基因工程研究。  相似文献   

10.
Transgenic plants of Tricyrtis hirta carrying the intron-containing β-glucuronidase (GUS) gene under the control of the CaMV35S promoter have been cultivated for two years. Four independent transgenic plants produced flowers 1–2 years after acclimatization, and all of them contained one copy of the transgene as indicated by inverse polymerase chain reaction (PCR) analysis. All the four transgenic plants showed stable expression of the gus gene in leaves, stems, roots, tepals, stamens and pistils as indicated by histochemical and fluorometric GUS assays, although differences in the GUS activity were observed among different organs of each transgenic plant. No apparent gus gene silencing was observed in transgenic T. hirta plants even after two years of cultivation.  相似文献   

11.
The effect of dithiothreitol (DTT) on the expression of the β-glucuronidase (GUS) reporter gene under the control of the CaMV-35 S promoter has been investigated by radioactive labelling and immunoprecipitation of the enzyme in protoplasts from stably transformed tobacco plants and compared with that observed in protoplasts transiently expressing the same gene construct. An increase in net accumulation of GUS during the culture period in response to externally added DTT (2 mm) was observed both in protoplasts from transformed tobacco plants and in electroporated protoplasts. DTT had no effect on rate of degradation of the mature GUS protein, as shown in a pulse-chase experiment. Relevant aspects of protoplast physiology, such as viability, synthesis of 35S-labelled cellular proteins, or synthesis and export of pathogenesis-related proteins (one putative chitinase and two 1,3-β-glucanases) were not affected by the reducing reagent. Received: 15 December 1997 / Revision received: 14 April 1998 / Accepted: 1 May 1998  相似文献   

12.
13.
14.
A promoter fusion (Sh35) combining upstream regulatory regions from the maize Sh1 promoter with a truncated 35S promoter, Δ9035 (–90 to +8) has been compared with the original Sh1 promoter for its capacity to promote expression of the β-glucuronidase (GUS) gene in stably transformed tomato plants. For both promoters, very faint GUS expression was detected in the vegetative tissues, and no expression was detected in the fruit pericarp tissues. However, in the seed, Sh1 promoted low GUS expression but Sh35 directed 25-fold higher GUS expression. For both constructs, the profile of GUS expression was similar to that of endogenous sucrose synthase activity, but maximal GUS activity was reached 15 days after the peak of sucrose synthase activity. Received: 20 October 1998 / Revision received: 1 December 1998 / Accepted: 14 December 1998  相似文献   

15.
A 479-bp bi-directional promoter controls the expression of two genes (mas1′ and mas2′) that encode enzymes for the synthesis of the opine mannopine in plant tissues infected with Agrobacterium tumefaciens. This 5′ regulatory region (mas promoter) contains all the cis-acting elements involved in mediating the complex regulatory properties of these genes in plants. Using different mas promoter regions fused to a minimal 35S promoter (35SΔ108), we found that the regulatory properties of these divergent promoters result from the presence of orientation-dependent negative and positive regulatory regions. Some of these elements have the unusual property of acting as enhancers in one orientation and as silencers in the other. Using electrophoretic mobility shift analysis (EMSA), we showed that the functional mas promoter regions identified by fluorometric and histochemical assays for reporter gene activity in transgenic plants have the ability specifically to bind nuclear protein factors from Nicotiana tabacum, Phaseolus vulgaris, Solanum tuberosum, and Arabidopsis thaliana. Received: 7 May 1999 / Accepted: 5 August 1999  相似文献   

16.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

17.
The development of rapid and efficient strategies to generate selectable marker-free transgenic plants could help increase the consumer acceptance of genetically modified (GM) plants. To produce marker-free transgenic plants without conditional treatment or the genetic crossing of offspring, we have developed a rapid and convenient DNA excision method mediated by the Cre/loxP recombination system under the control of a −46 minimal CaMV 35S promoter. The results of a transient expression assay showed that −46 minimal promoter::Cre recombinase (−46::Cre) can cause the loxP-specific excision of a selectable marker, thereby connecting the 35S promoter and β-glucuronidase (GUS) reporter gene. Analysis of stable transgenic Arabidopsis plants indicated a positive correlation between loxP-specific DNA excision and GUS expression. PCR and DNA gel-blot analysis further revealed that nine of the 10 tested T1 transgenic lines carried both excised and nonexcised constructs in their genomes. In the subsequent T2 generation plants, over 30% of the individuals for each line were marker-free plants harboring the excised construct only. These results demonstrate that the −46::Cre fusion construct can be efficiently and easily utilized for producing marker-free transgenic plants.  相似文献   

18.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants.  相似文献   

19.
Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the β-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems. Received: 24 March 1997 / Accepted: 26 November 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号