首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Free proline increased in leaves of orange (Citrus sinensis [L.] Osb. cv. Valencia) and grapefruit (Citrus paradisi Macfad. cv. Star Ruby) trees on a wide range of citrus rootstocks during cold hardening. Increases in sugars accompanied proline accumulation. During cold hardening, the rate of proline accumulation was greater in old than in young leaves. In leaves of grapefruit trees kept in the dark during cold hardening, neither proline nor sugars increased and the degree of cold hardiness was less than in trees exposed to light. Like sugar accumulations, proline accumulation does not reflect specific degrees of cold hardiness in citrus cultivars.  相似文献   

2.
The effect of wilting on proline synthesis, proline oxidation, and protein synthesis—all of which contribute to proline accumulation—was determined in nonstarved barley (Hordeum vulgare L.) leaves. Nonstarved leaves were from plants previously in the light for 24 hours and starved leaves were from plants previously in the dark for 48 hours. Wilted leaves from nonstarved plants accumulated proline at the rate of about 1 μmole per hour per gram of fresh weight whereas wilted leaves from starved plants accumulated very little proline. Wilting caused a 40-fold stimulation of proline synthesis from glutamate in nonstarved leaves but had very little effect in starved leaves. Proline oxidation and protein synthesis, on the other hand, were inhibited by wilting in both nonstarved and starved leaves. Thus, the role of carbohydrates in proline accumulation is to supply precursors for the stimulated proline synthesis. These results further indicate that the main metabolic response causing proline to accumulate in wilted barley leaves is the stimulation of proline synthesis from glutamate. The difference between these results and those obtained with beans is discussed.

Wilting caused an increased conversion of glutamate to other products. In nonstarved leaves, conversion to organic acids as well as to proline was increased. In starved leaves, wilting caused an increase in the conversion of glutamate to glutamine, aspartate, asparagine, and organic acids.

  相似文献   

3.
Proline was metabolized when vacuum infiltrated into starved bean (Phaseolus vulgaris L.) leaves from plants previously in the dark for 48 hours, but an equivalent increase in protein proline was not observed. When 14C-proline was infiltrated into starved leaves, a large percentage of the 14C was recovered in other amino acids, organic acids, and CO2, in addition to that recovered as protein proline. However, extensive oxidation of proline was observed only if enough proline was added to increase substantially the endogenous concentration of proline. Increasing the endogenous concentration did not affect the amount of proline that was incorporated into protein.  相似文献   

4.
The content of bound proline sharply increased in proteins of different organs of young plants of winter rape and winter wheat exposed for 72 h to temperatures from 0 to 2 °C while it decreased only in root tips of wheat plants. Free proline which at 20 °C occurs in all plant organs only in trace amounts, accumulated considerably after 72 h exposure to low temperatures in the above-ground organs and only slightly in the roots. Free proline did not accumulate during the first 24 h at 0 to 2 °C in detached leaves of winter wheat but it was incorporated into newly synthetized proteins in which proline content increased after 6 h incubation to its maximum ( + 11.75% in comparison to control); the content of free glutamate sharply decreased during the first 6 h of incubation and the accumulation of bound glutamate was belated in comparison to that of bound proline. Sucrose infiltrated into detached leaves of winter wheat strongly stimulated proline incorporation into proteins at low temperatures, but it did not influence glutamate incorporation. The results suggest that the main reason for thede novo proline biosynthesis during the first six hours of hardening of the plants is the synthesis of proteins rich in proline; free proline accumulates later predominantly in the above-ground organs as a surplus. The above-ground organs are dehydrated in the course of the hardening process approximately to the same extent both in the light and in the dark, but proline content increases much less in the dark than in tho light.  相似文献   

5.
To elucidate proline antioxidant properties in common sage (Salvia officinalis L.) plants, they were treated with paraquat (a producer of superoxide radical) and/or NaCl and also with paraquat and proline at the stage of 4–5 true leaves. The paraquat solution (1 ml containing 0.1 μmol of the agent) was applied to the leaf surface; NaCl (200 mM) and proline (the final concentration of 5 mM) were added to nutrient medium. Experimental plants were firstly kept in darkness for 12 h, then illuminated, and in 3, 6, and 12 h, leaves and roots were fixed for biochemical analyses. The results obtained are in agreement with the supposition of proline antioxidant properties. In particular, it was established that paraquat induced a slight increase in the proline level in the leaves during dark period of plant growth and also during subsequent 3 h after light switching on. This transient proline accumulation in the leaves was accompanied by its level decrease in the roots. Proline addition to the nutrient medium of paraquat-treated plants neutralized paraquat damaging action on the leaves. In the presence of paraquat, proline treatment reduced the accumulation in the roots of hydrogen peroxide and malondialdehyde, the product of membrane lipid peroxidation. It also affected indirectly the activities of superoxide dismutase (SOD) and free, covalently bound, and ionically bound peroxidases. Keeping in mind that, in the presence of paraquat, superoxide-induced changes in SOD activity in the roots were negatively correlated with the level of proline, which content was the highest during the last hours of experiments, we can conclude that proline antioxidant effects are manifested only after 12 h of stressor action, whereas antioxidant enzymes are involved in ROS scavenging during the earlier stage of damaging factor action.  相似文献   

6.
The effects of wilting on the fate of proline and on the rates of nonprotein proline formation and utilization have been determined in excised bean leaves. Wilting did not alter the fate of exogenously added 14C-l-proline (2 mm) in either non-starved leaves (from plants previously in the light) or starved leaves (from plants previously in the dark). The fate of proline in nonstarved leaves was protein synthesis and in starved leaves was protein synthesis and oxidation to other compounds.  相似文献   

7.
Tephrosia purpurea Pers. was found to accumulate high proline content in dry habitat. The proline content was higher in shoots, especially in leaves, than in roots. Pod walls and young seeds showed the highest proline content. The proline content of young leaves was higher than that of mature and old leaves. During leaf senescencein vitro proline content increased rapidly upto 6 h and further decreased in leaves as well as in leachate. High proline content seems to be positively related with ‘survival capability’ of this plant.  相似文献   

8.
Light-Dark Changes in Proline Content of Barley Leaves under Salt Stress   总被引:3,自引:0,他引:3  
Proline accumulation in leaves of barley (Hordeum vulgare L. cv. Alfa) seedlings treated with 150 mM NaCl was promoted in the light and suppressed in the dark. The light/dark changes of proline content was enhanced with each 12 h light/12 h dark cycle and the proline content increased steadily. Root and shoot concentrations of Na+ and Cl in salt treated plants increased about 10 to 25 times as compared to the control. The content of these ions and the content of malondialdehyde were higher in the shoot of seedlings exposed to salt stress for 4 d in the light in comparison with the seedlings exposed to NaCl for 4 d in darkness. Light stimulated both ions and proline accumulation in the leaves and has no effect in the roots. Oxygen uptake was higher in the seedlings kept 4 d in the light which have higher endogenous free proline content. Chlorophyll fluorescence measurements showed that the photochemical activity of PS 2 slightly decreased as a result of salt stress and was not influenced by light regimes during plant growth.  相似文献   

9.
Changes in peroxidase activity were studied in the attachedfirst leaf of dark-treated Oryza sativa L. cv. Bala seedlingsin response to benzyladenine and light treatments during laterperiods of leaf growth, prior to maturation. Darkness causeda mild decrease in peroxidase activity; but in illuminated leaves,the enzyme activity was stable at all times. There was a sharprise in peroxidase activity in dark-treated leaves upon lightor benzyladenine application, irrespective of the time of treatment.Benzyladenine treatment to illuminated leaves also caused arise in peroxidase activity. Exogenous hydrogen peroxide, glycolateand amizol resulted in a rise in peroxidase activity, whichwas further enhanced by benzyladenine treatment in both lightand dark incubated leaves. Proline maintained chlorophyll levels,whereas hydroxyproline caused chlorophyll degradation. Benzyladenineenhanced the proline effect and counteracted the hydroxyprolineeffect on chlorophyll. Both proline and hydroxyproline increasedperoxidase activity in the leaves of light and dark incubatedseedlings, and the enzyme activity further increased after benzyladeninetreatment. (Received December 7, 1984; Accepted May 8, 1985)  相似文献   

10.
Leaves from dark-grown barley (Hordeum vulgare L. var Larker) seedlings grown in the presence and absence of fluridone were used to determine whether or not abscisic acid (ABA) accumulation was necessary for proline to accumulate in wilted tissue. Wilted tissue (polyethylene glycol-treated) leaves from fluridone-grown seedlings did not accumulate ABA but did accumulate proline at a rate that was not different from the non-fluridone-treated leaves. Thus ABA accumulation is not required for wilting-induced proline accumulation in barley leaves. Proline accumulation in wilted leaves from the wilty tomato (Lycopersicon esculentum) mutant, flacca, was compared to that in the wild type, Rheinlands Ruhm. Proline accumulated in wilted leaves from flacca. The rate of accumulation was faster in flacca compared to the rate in the wild type because the wilty mutant wilted faster. ABA accumulated in wilted leaves from the wild type but not in the wilty mutant. This result is a further confirmation that ABA accumulation is not required for wilting-induced proline accumulation. These results are significant in that proline accumulation in barley leaves can be induced independently by any one of three treatments: wilting, ABA, or salt.  相似文献   

11.
Gábor Pálfi 《Planta》1967,78(2):196-199
Summary It has been established that in intact plants suffering from scarcity of water as well as in isolated withering leaves the amount of proline increases considerably. The main factor in the isolated leaves is thus the scarcity of water and not the injury due to the defoliation. The proline content of the leaves withering in the dark increases only for a few days and then decreases with the diminution of the carbohydrates. Of the active substances tested only 2,4-DNP inhibited the proline synthesis during the withering. It is very probable that in the course of withering the great amount of proline forms during the oxidation of carbohydrates via -ketoglutarate. The oxydative phosphorylation is uncoupled by 2,4-DNP. Kinetin, 2,4-D and antimetabolites applied do not inhibit the abnormal increase of proline.  相似文献   

12.
Detached leaf is in the state of increasing water deficit; it is a good experimental model for looking into the hardening effect of adaptation of eight-day-old maize (Zea mays L.) seedlings to short-term drought (five days without watering). The light stage of photosynthesis and photosynthetic CO2/H2O exchange in detached leaves were studied. Specific surface density of leaf tissue (SSDL), the content of chlorophylls a and b, proline, MDA as well as photosynthetic parameters: quantum yield of photosystem II fluorescence, assimilation of CO2, and transpiration at room temperature and light saturation (density of PAR quantum flux of 2000 μmol/(m2 s)) at normal and half atmospheric CO2 concentration were determined. The leaves of seedlings exposed to short-term drought differed from control material by a greater SSDL and higher content of proline. The hardening effect of the stress agent on the dark stage of photosynthesis was detected; it was expressed in the maintenance of the higher photosynthetic CO2 assimilation against control material due to the elevation of stomatal conductance for CO2 diffusing into the leaf. Judging from the lack of differences in the MDA content, short-term drought did not injure photosynthetic membranes. In detached leaves of experimental maize seedlings, photosynthesis was maintained on a higher level than in control material.  相似文献   

13.
Inhibition of proline oxidation by water stress   总被引:21,自引:17,他引:4       下载免费PDF全文
The conversion of proline to glutamic acid and hence to other soluble compounds (proline oxidation) proceeds readily in turgid barley (Hordeum vulgare) leaves and is stimulated by higher concentrations of proline. This suggests that proline oxidation could function as a control mechanism for maintaining low cellular levels of proline in turgid tissue. In water-stressed tissue, however, proline oxidation is reduced to negligible rates. These results are consistent with the idea that proline accumulation results from inactivation by water stress of normal control mechanisms. It seems likely that inhibition of proline oxidation is necessary in maintaining the high levels of proline found in stressed barley leaves.  相似文献   

14.
Steady state proline levels in salt-shocked barley leaves   总被引:3,自引:1,他引:2       下载免费PDF全文
Excised barley (Hordeum vulgare var Larker) leaves were treated with salt solutions or wilted. After the treatment period, the leaves were allowed to recover in a 50 millimolar sucrose and 1 millimolar glutamate solution, and proline, Na+, and K+ were measured at intervals. Na+ and K+ concentrations stayed at a constant high level after the salt treatments, and proline increased to a steady state concentration in response. The relationship between the maximum rate of proline accumulation and the Na+ concentration reached in each experiment was linear. The final steady state proline concentration reached was also directly proportional to the Na+ concentration. For a given Na+ concentration in the leaves, the steady state proline level was greater when 410 millimolar NaCl was added to the leaves than when 205 millimolar NaCl was added. These results are consistent with proline acting as a compatible cytoplasmic solute, balancing an accumulation of salts outside of the cytoplasm.

In contrast to the proline levels in salt-shocked leaves, the concentrations in wilted leaves decreased to near control levels within 24 hours of relief of stress.

  相似文献   

15.
When excised second leaves from 2-week-old barley (Hordeum vulgare var Larker) plants were incubated in a wilted condition, abscisic acid (ABA) levels increased to 0.6 nanomole per gram fresh weight at 4 hours then declined to about 0.3 nanomole per gram fresh weight and remained at that level until rehydrated. Proline levels began to increase at about 4 hours and continued to increase as long as the ABA levels were 0.3 nanomole per gram fresh weight or greater. Upon rehydration, proline levels declined when the ABA levels fell below 0.3 nanomole per gram fresh weight.

Proline accumulation was induced in turgid barley leaves by ABA addition. When the amount of ABA added to leaves was varied, it was observed that a level of 0.3 nanomole ABA per gram fresh weight for a period of about 2 hours was required before proline accumulation was induced. However, the rate of proline accumulation was slower in ABA-treated leaves than in wilted leaves at comparable ABA levels. Thus, the threshold level of ABA for proline accumulation appeared to be similar for wilted leaves where ABA increased endogenously and for turgid leaves where ABA was added exogenously. However, the rate of proline accumulation was more dependent on ABA levels in turgid leaves to which ABA was added exogenously than in wilted leaves.

Salt-induced proline accumulation was not preceded by increases in ABA levels comparable to those observed in wilted leaves. Levels of less than 0.2 nanomole ABA per gram fresh weight were measured 1 hour after exposure to salt and they declined rapidly to the control level by 3 hours. Proline accumulation commenced at about 9 hours. Thus, ABA accumulation did not appear to be involved in salt-induced proline accumulation.

  相似文献   

16.
Barley (Hordeum vulgare L. var. Prior) leaves converted more 14C-glutamic acid to free proline when water-stressed than when turgid; neither decreased protein synthesis nor isotope trapping by the enlarged free proline pools found in wilted tissue seemed to account for the result. This apparent stimulation of proline biosynthesis in wilted leaves was not observed when radioactive ornithine or P5C (Δ1-pyrroline-5-carboxylate, an intermediate following glutamate in proline synthesis) were used as proline precursors unless proline levels were high as a result of previous water stress. We interpret this to mean that any stimulation of proline synthesis by water stress must act on P5C formation rather than its reduction to proline. Experiments showing greater apparent conversion of 14C-glutamate to proline do not unequivocally prove that proline synthesis is stimulated by water stress, as P5C feeding studies show that proline oxidation is inhibited under comparable conditions. This inhibition could account, at least in part, for increased proline labeling, and must be considered an alternate possibility.  相似文献   

17.
《Phytochemistry》1986,25(8):1843-1846
The annual course of frost resistance and free proline content was studied in leaves at different stages of development of a woody species (Nothofagus dombeyi) from Southern Chile. The freezing resistance reached a minimum in late spring or summer and a maximum in the autumn-winter period. Adult and juvenile trees showed a similar degree of resistance; meanwhile, cold resistance was maximum at the seedling stage. Free proline levels and frost resistance in leaves changed throughout the seasonal cycle, increasing in winter and decreasing in summer. Artificial hardening caused changes in amino acid content of leaves; while valine, proline, lysine, histidine, serine and alanine increased upon hardening, aspartic acid, glutamic acid and arginine decreased. The nature of cold-induced metabolic adjustments is discussed as well as its ecological significance.  相似文献   

18.
The facultative halophyte Mesembryanthemum crystallinum responds to salt stress by increasing the levels of phosphoenolpyruvate carboxylase (PEPCase) and other enzymes associated with Crassulacean acid metabolism. A more common response to salt stress in sensitive and tolerant species, including M. crystallinum, is the accumulation of proline. We have established M. crystallinum suspension cultures to investigate whether both these salt-induced responses occur at the cellular level. Leaf-and root-derived cultures maintain 5% of the total soluble amino acids as proline. Cell culture growth slows upon addition of 400 millimolar NaCl, and proline levels increase to 40% of the total soluble amino acids. These results suggest a functional salt-stress and response program in Mesembryanthemum cells. Suspension cultures grown with or without 400 millimolar NaCl have PEPCase levels that compare with those from roots and unstressed leaves. The predominant protein cross-reacting with an anti-PEPCase antibody corresponds to 105 kilodaltons (apparent molecular mass), whereas a second species of approximately 110 kilodaltons is present at low levels. In salt-stressed leaves, the 110 kilodalton protein is more prevalent. Levels of mRNA for both ppc1 (salt stress induced in leaves) and ppc2 (constitutive) genes in salt-treated suspensions cultures are equal to unstressed leaves, and only twice the levels found in untreated suspension cultures. Whereas cells accumulate proline in response to NaCl, PEPCase protein amounts remain similar in salt-treated and untreated cultures. The induction upon salt stress of the 110 kilodalton PEPCase protein and other Crassulacean acid metabolism enzymes in organized tissues is not observed in cell culture and may depend on tissue-dependent or photoautotrophy-dependent programs.  相似文献   

19.
Nitrogen assimilation by a Citrus tree   总被引:1,自引:0,他引:1  
Primary assimilation of 15N-ammonium or 15N-nitrate by excised leaves of satsuma mandarin (Citrus unshiu Markovitch) was examined under light and dark conditions. Under both conditions both types of nitrogen were most markedly incorporated into glutamine-amide nitrogen in the primary step of the assimilation, and into proline in the later steps. Incorporation of ammonium or nitrate into amino acids was more active in the light than in the dark, although the stimulating effect of light on the incorporation was relatively small in both cases.  相似文献   

20.
The Mediterranean region (and globally also other regions) is characterized by the presence of phryganic plants, i.e. subshrubs that grow under hot and arid environmental conditions. These plants are reported to be affected by summer drought stress. However, in the present study the phryganic plant Teucrium polium (mountain germander) appears to be affected by winter chilling stress rather than by summer drought stress in a specific area. Winter leaves of the plant are smaller and thicker compared to summer leaves, have more stomata and glandular hairs, and their chloroplasts are larger, more numerous, with voluminous starch grains. Moreover, epidermal and mesophyll cells of winter leaves contain in their vacuoles dark phenolics and calcium oxalate crystals. Summer leaves are devoid of vacuolar phenolics and their chloroplasts possess many large plastoglobuli. Leaf gas exchange parameters (photosynthesis, transpiration, stomatal conductance) are significantly higher in winter leaves. Concentrations of osmoprotectors (stress indicators) like proline and soluble sugars are similarly higher in winter leaves. Essential oil assessments showed a significantly higher oil yield of winter leaves compared to summer leaves. Percentages of the major oil components (linalool, terpinen-4-ol, germacrene D, and spathulenol) are remarkably higher in winter oils than in summer oils. In conclusion, low environmental temperatures (1–10 °C) appear to decisively influence the structure and function of winter leaves compared to summer leaves. Winter plants undergo chilling stress to which they respond by developing various mechanical and chemical defensive strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号