首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human T-cell leukemia virus type 1 (HTLV-1) envelope protein is required for virus spread. This study further characterizes the role of the envelope protein in HTLV-1 immortalization. Viruses with single amino acid substitutions within the SU protein at residue 75, 81, 95, 101, 105, or 195 or with a C-terminal cytoplasmic domain truncation (CT), as well as an envelope-null (EN) virus, were generated within an infectious molecular clone, ACH. Transfection of 293T cells resulted in the release of similar amounts of virus particles from all of the mutants as determined by p19 enzyme-linked immunosorbent assay and immunoblot analysis of Gag in cell lysates and supernatants. The virus particles from all mutants except ACH-101, ACH-CT, and ACH-EN were infectious for B5 macaque cells in cell-free and cell-to-cell transmission assays and were capable of immortalizing transfected CD4(+) lymphocytes. These results indicate that HTLV-1 spread is required for immortalization.  相似文献   

2.
T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.  相似文献   

3.
4.
Significantly higher frequencies of tumor necrosis factor alpha- and interleukin-2-secreting human T-lymphotropic virus type 1 (HTLV-1)-specific CD4(+) T cells were present in the peripheral blood mononuclear cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients than in those of asymptomatic carriers with similar provirus loads. The data suggest that HTLV-1-specific CD4(+) T cells play a role in the pathogenesis of HAM/TSP.  相似文献   

5.
In vivo cellular tropism of human T-cell leukemia virus type 1.   总被引:37,自引:21,他引:16       下载免费PDF全文
To establish the phenotype of human T-cell leukemia virus type 1 (HTLV-1)-infected cells in peripheral blood, the polymerase chain reaction was used to detect and quantitate viral DNA in subpopulations of leukocytes obtained from patients with tropical spastic paraparesis and asymptomatic carriers. HTLV-1 could not be detected in peripheral blood mononuclear cells thoroughly depleted of T lymphocytes (E- CD3-), nor could it be detected in highly enriched populations of B lymphocytes (E- CD19+), monocytes (E- CD14+), or natural killer cells (E- CD16+). T lymphocytes were strongly positive for HTLV-1, and fractionation of this population revealed that 90 to 99% of the HTLV-1 DNA segregated with the CD4+ CD8- and CD45RO+ subsets. No difference between the cell type distribution of HTLV-1 in the asymptomatic carrier and the subjects with tropical spastic paraparesis was evident. Southern hybridization of genomic DNA prepared from the peripheral blood of HTLV-1 carriers indicated that up to 10% of circulating leukocytes may carry the HTLV-1 provirus.  相似文献   

6.
We investigated the influence of transmembrane protein (TM) domains on incorporation of retroviral envelopes into virions and on infectivity. We introduced complete, truncated, or chimeric Friend murine leukemia virus (F-MuLV) and human T-cell leukemia virus type 1 (HTLV-1) envelopes into an MuLV particle-producing complementation cell line. As shown previously for HTLV-1 envelopes containing extracellular domains of F-MuLV TM (C. Denesvre, P. Sonigo, A. Corbin, H. Ellerbrok, and M. Sitbon, J. Virol. 69:4149-4157, 1995), reverse chimeric F-MuLV envelopes containing the extracellular domain of HTLV-1 TM were not processed. In contrast, a chimeric MuLV envelope containing the entire HTLV membrane-spanning and cytoplasmic domains (FHTMi) was efficiently processed, fusogenic as tested in a cell-to-cell assay, and efficiently incorporated into MuLV particles. However, these MuLV particles bearing FHTMi envelope proteins could not infect mouse or rat cells which are susceptible to wild-type F-MuLV. Therefore, envelopes which are readily fusogenic in cell-to-cell assays and also efficiently incorporated into virions may not necessarily confer virus-to-cell fusogenicity. HTLV envelopes, whether parental, chimeric (containing the MuLV cytoplasmic tail) or with a truncated cytoplasmic domain, were incorporated into MuLV particles with equal efficiencies, indicating that the cytoplasmic tails of these envelopes did not determine their incorporation into virions. In contrast to FHTMi envelope, HTLV-1 envelopes with F-MuLV membrane-spanning and cytoplasmic domains, as well as wild-type HTLV-1 envelopes, conferred virion infectivity. These results help to define requirements for envelope incorporation into retroviral particles and their cell-free infectivity.  相似文献   

7.
Studies using adherent cell lines have shown that glucose transporter-1 (GLUT-1) can function as a receptor for human T-cell leukemia virus type 1 (HTLV). In primary CD4(+) T cells, heparan sulfate proteoglycans (HSPGs) are required for efficient entry of HTLV-1. Here, the roles of HSPGs and GLUT-1 in HTLV-1 and HTLV-2 Env-mediated binding and entry into primary T cells were studied. Examination of the cell surface of activated primary T cells revealed that CD4(+) T cells, the primary target of HTLV-1, expressed significantly higher levels of HSPGs than CD8(+) T cells. Conversely, CD8(+) T cells, the primary target of HTLV-2, expressed GLUT-1 at dramatically higher levels than CD4(+) T cells. Under these conditions, the HTLV-2 surface glycoprotein (SU) binding and viral entry were markedly higher on CD8(+) T cells while HTLV-1 SU binding and viral entry were higher on CD4(+) T cells. Binding studies with HTLV-1/HTLV-2 SU recombinants showed that preferential binding to CD4(+) T cells expressing high levels of HSPGs mapped to the C-terminal portion of SU. Transfection studies revealed that overexpression of GLUT-1 in CD4(+) T cells increased HTLV-2 entry, while expression of HSPGs on CD8(+) T cells increased entry of HTLV-1. These studies demonstrate that HTLV-1 and HTLV-2 differ in their T-cell entry requirements and suggest that the differences in the in vitro cellular tropism for transformation and in vivo pathobiology of these viruses reflect different interactions between their Env proteins and molecules on CD4(+) and CD8(+) T cells involved in entry.  相似文献   

8.
The human BCR-ABL oncogenes encoded by the Philadelphia chromosome (Ph) affect the pathogenesis of diverse types of leukemia and yet are rarely associated with T-lymphoid leukemia. To determine whether BCR-ABL kinases are inefficient in transforming T lymphocytes, BCR-ABL-expressing retroviruses were injected intrathymically into mice. Thymomas that expressed BCR-ABL kinase developed after a relatively long latent period. In most thymomas, deletion of 3' proviral sequences resulted in loss of tk-neo and occasionally caused expression of kinase-active carboxy-terminally truncated BCR-ABL oncoprotein. In contrast, deletion of 3' proviral sequences was not observed in thymomas induced with Abelson murine leukemia virus (A-MuLV). BCR-ABL viruses induced distinct patterns of disease and involved different thymocyte subsets than A-MuLV and Moloney murine leukemia virus (Mo-MuLV). While Mo-MuLV only induced Thy-1+ thymomas, v-abl- and BCR-ABL-induced thymomas often contained mixed populations of B220+ and Thy-1+ lymphocytes in the same tumor. In most v-abl and BCR-ABL tumors, Thy-1+ lymphoid cells expressed CD8 and a continuum of CD4 ranging from negative to positive. Conversely, Mo-MuLV thymomas contained distinct populations of CD4+ cells that were either CD8+ or CD8-. A-MuLV-transformed T-lymphoid cells did not express the CD3/T-cell receptor complex, while BCR-ABL tumors were CD3+. Thus, BCR-ABL viruses preferentially induce somewhat more differentiated T lymphocytes than are transformed by A-MuLV. Furthermore, rare B220+ lymphocytes may represent preferred v-abl and BCR-ABL transformation targets in the thymus.  相似文献   

9.
In a previous study we identified the subpopulations of thymus cells that were infected by the lymphomagenic MCF13 murine leukemia virus (MLV) (F. K. Yoshimura, T. Wang, and M. Cankovic, J. Virol. 73:4890-4898, 1999) and observed an effect on thymus size by virus infection. In this report we describe our results which demonstrate that MCF13 MLV infection of thymuses reduced the number of T lymphocytes in this organ. Histological examination showed diffuse lymphocyte depletion, which was most striking in the CD4(+) CD8(+) lymphocyte-enriched cortical zone. Consistent with this, flow cytometric analysis showed that the lymphocytes which were depleted were predominantly the immature CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. A comparison of the percentages of live, apoptotic, and dead cells of the gp70(+) and gp70(-) thymic lymphocytes suggested that this effect on thymus cellularity is a result of virus infection. Studies of the survival of thymic T lymphocytes in culture showed that cells from MCF13 MLV-inoculated mice underwent greater apoptosis and death than cells from control animals. Assays for apoptosis included 7-amino-actinomycin D staining, DNA fragmentation, and cleavage of caspase-3 and poly(ADP-ribose) polymerase proenzymes. Our results suggest that apoptosis of thymic lymphocytes by virus infection is an important step in the early stages of MCF13 MLV tumorigenesis.  相似文献   

10.
11.
Ex vivo human immunodeficiency virus type 1 (HIV-1) infection of human lymphoid tissue recapitulates some aspects of in vivo HIV-1 infection, including a severe depletion of CD4(+) T cells and suppression of humoral immune responses to recall antigens or to polyclonal stimuli. These effects are induced by infection with X4 HIV-1 variants, whereas infection with R5 variants results in only mild depletion of CD4(+) T cells and no suppression of immune responses. To study the mechanisms of suppression of immune responses in this ex vivo system, we used aldrithiol-2 (AT-2)-inactivated virions that have functional envelope glycoproteins but are not infectious and do not deplete CD4(+) T cells in human lymphoid tissues ex vivo. Nevertheless, AT-2-inactivated X4 (but not R5) HIV-1 virions, even with only a brief exposure, inhibit antibody responses in human lymphoid tissue ex vivo, similarly to infectious virus. This phenomenon is mediated by soluble immunosuppressive factor(s) secreted by tissue exposed to virus.  相似文献   

12.
The envelopes of two highly divergent oncoviruses, human T-cell leukemia virus type 1 (HTLV-1) and Friend murine leukemia virus (F-MuLV), have distinct patterns of cellular receptor recognition, fusion, and syncytium formation. To analyze the influence of the transmembrane envelope subunit (TM) on fusogenic properties, we substituted either the entire TM or distinct domains from F-MuLV for the corresponding domains in the HTLV-1 envelope. Parental, chimeric, and truncated envelopes cloned into a eukaryotic expression vector were monitored for fusogenic potential in human, rat, and murine indicator cell lines by using a quantitative assay. This highly sensitive assay allowed us to assess the fusogenic properties and syncytium-forming abilities of the HTLV-1 envelope in murine NIH 3T3 cells. All chimeric envelopes containing extracellular sequences of the F-MuLV TM were blocked in their maturation process. Although deletions of the HTLV-1 cytoplasmic domain, alone and in combination with the membrane-spanning domain, did not prevent envelope cell surface expression, they impaired and suppressed fusogenic properties, respectively. In contrast, envelopes carrying substitutions of membrane-spanning and cytoplasmic domains were highly fusogenic. Our results indicate that these two domains in F-MuLV and HTLV-1 constitute structural entities with similar fusogenic properties. However, in the absence of a cytoplasmic domain, the F-MuLV membrane-spanning domain appeared to confer weaker fusogenic properties than the HTLV-1 membrane-spanning domain.  相似文献   

13.
P Lusso  F Lori    R C Gallo 《Journal of virology》1990,64(12):6341-6344
Although human immunodeficiency virus (HIV) is the causative agent of the acquired immunodeficiency syndrome and related disorders, it has been suggested that viral cofactors may accelerate the progression of the disease. We present evidence that human T lymphoid cells productively coinfected by HIV type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) or HTLV-II generate a progeny of phenotypically mixed viral particles that allow the penetration of HIV-1 into previously nonsusceptible CD4- human cells, including mature CD8+ T lymphocytes, B lymphoid cells, epithelial cells, and skeletal muscle cells. The infection is independent of the major HIV-1 receptor, (i.e., the CD4 glycoprotein) since OKT4a, a neutralizing anti-CD4 monoclonal antibody, fails to block the penetration of HIV-1. Similarly, infection is not inhibited by monoclonal antibody M77, directed toward the neutralizing loop of the gp120 envelope glycoprotein of HIV-1. In contrast, pretreatment of the virus stock with HTLV-I-neutralizing human serum completely abolishes the penetration of phenotypically mixed HIV-1 into CD4- cells. These results suggest that HTLV-I or HTLV-II may increase the pathogenicity of HIV-1 by broadening the spectrum of its cellular tropism and, thus, favoring its spread within the organism of coinfected hosts.  相似文献   

14.
Vaccinia virus (VACV) has been attracting attention recently not only as a vector for various vaccines but also as an immunization tool against smallpox because of its potential use as a bioterrorism agent. It has become evident that in spite of a long history of studies of VACV, its tissue pathogenesis remains to be fully understood. Here, we investigated the pathogenesis of VACV and its interactions with human immunodeficiency virus type 1 (HIV-1) in the context of human lymphoid tissues. We found that ex vivo-cultured tonsillar tissue supports productive infection by the New York City Board of Health strain, the VACV strain of the Dryvax vaccine. VACV readily infected both T and non-T (B) lymphocytes and depleted cells of both of these subsets equally over a 12-day period postinfection. Among T lymphocytes, CD8(+) cells are preferentially depleted in accordance with their preferential infection: the probability that a CD8(+) T cell will be productively infected is almost six times higher than for a CD4(+) T cell. T cells expressing CCR5 and the activation markers CD25, CD38, and HLA-DR are other major targets for infection by VACV in lymphoid tissue. As a consequence, VACV predominantly inhibits the replication of the R5(SF162) phenotype of HIV-1 in coinfected tissues, as R5-tropic HIV-1 requires activated CCR5(+) CD4(+) cells for productive infection. Human lymphoid tissue infected ex vivo by VACV can be used to investigate interactions of VACV with other viruses, in particular HIV-1, and to evaluate various VACV vectors for the purpose of recombinant vaccine development.  相似文献   

15.
16.
17.
18.
Xie L  Green PL 《Journal of virology》2005,79(23):14536-14545
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ T cells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.  相似文献   

19.
Progression of human immunodeficiency virus (HIV) disease is associated with massive death of CD4(+) T cells along with death and/or dysfunction of CD8(+) T cells. In vivo, both HIV infection per se and host factors may contribute to the death and/or dysfunction of CD4(+) and CD8(+) T cells. Progression of HIV disease is often characterized by a switch from R5 to X4 HIV type 1 (HIV-1) variants. In human lymphoid tissues ex vivo, it was shown that HIV infection is sufficient for CD4(+) T-cell depletion. Here we address the question of whether infection of human lymphoid tissue ex vivo with prototypic R5 or X4 HIV variants also depletes or impairs CD8(+) T cells. We report that whereas productive infection of lymphoid tissue ex vivo with R5 and X4 HIV-1 isolates induced apoptosis in CD4(+) T cells, neither viral isolate induced apoptosis in CD8(+) T cells. Moreover, in both infected and control tissues we found similar numbers of CD8(+) T cells and similar production of cytokines by these cells in response to phorbol myristate acetate or anti-CD3-anti-CD28 stimulation. Thus, whereas HIV-1 infection per se in human lymphoid tissue is sufficient to trigger apoptosis in CD4(+) T cells, the death of CD8(+) T cells apparently requires additional factors.  相似文献   

20.
We sought to determine the relationship between virus-mediated CD4(+) T-lymphocyte cytopathicity and viral coreceptor preference among various human immunodeficiency virus type 1 (HIV-1) subtypes in an ex vivo-infected human lymphoid tissue model. Our data show that all R5 HIV-1 infections resulted in mild depletion of CD4(+) T lymphocytes, whereas all X4 HIV-1 infections caused severe depletion of CD4(+) T lymphocytes regardless of their subtype origin. Thus, at least for the viruses within subtypes A, B, C, and E that were tested, coreceptor specificity is a critical factor that determines the ability of HIV-1 to deplete CD4(+) T cells in human lymphoid tissue infected ex vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号