首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative traits are shaped by networks of pleiotropic genes . To understand the mechanisms that maintain genetic variation for quantitative traits in natural populations and to predict responses to artificial and natural selection, we must evaluate pleiotropic effects of underlying quantitative trait genes and define functional allelic variation at the level of quantitative trait nucleotides (QTNs). Catecholamines up (Catsup), which encodes a negative regulator of tyrosine hydroxylase , the rate-limiting step in the synthesis of the neurotransmitter dopamine, is a pleiotropic quantitative trait gene in Drosophila melanogaster. We used association mapping to determine whether the same or different QTNs at Catsup are associated with naturally occurring variation in multiple quantitative traits. We sequenced 169 Catsup alleles from a single population and detected 33 polymorphisms with little linkage disequilibrium (LD). Different molecular polymorphisms in Catsup are independently associated with variation in longevity, locomotor behavior, and sensory bristle number. Most of these polymorphisms are potentially functional variants in protein coding regions, have large effects, and are not common. Thus, Catsup is a pleiotropic quantitative trait gene, but individual QTNs do not have pleiotropic effects. Molecular population genetic analyses of Catsup sequences are consistent with balancing selection maintaining multiple functional polymorphisms.  相似文献   

2.
Metabolic abnormalities of the insulin resistance syndrome (IRS) have been shown to aggregate in families and to exhibit trait-pair correlations, suggesting a common genetic component. A broad region on chromosome 7q has been implicated in several studies to contain loci that cosegregate with IRS-related traits. However, it is not clear whether such loci have any common genetic (pleiotropic) influences on the correlated traits. Also, it is not clear whether the chromosomal regions contain more than one locus influencing the IRS-related phenotypes. In this study we present evidence for linkage of five IRS-related traits [body mass index (BMI), waist circumference (WC), In split proinsulin (LSPI), In triglycerides (LTG), and high-density lipoprotein cholesterol (HDLC)] to a region at 7q11.23. Subsequently, to gain further insight into the genetic component(s) mapping to this region, we explored whether linkage of these traits is due to pleiotropic effects using a bivariate linkage analytical technique, which has been shown to localize susceptibility regions with precision. Four hundred forty individuals from 27 Mexican American families living in Texas were genotyped for 19 highly polymorphic markers on chromosome 7. Multipoint variance component linkage analysis was used to identify genetic location(s) influencing IRS-related traits of obesity (BMI and WC), dyslipidemia (LTG and HDLC), and insulin levels (LSPI); the analysis identified a broad chromosomal region spanning approximately 24 cM. To gain more precision in localization, we used a bivariate linkage approach for each trait pair. These analyses suggest localization of most of these bivariate traits to an approximately 6-cM region near marker D7S653 [7q11.23, 103-109 cM; a maximum bivariate LOD of 4.51 was found for the trait pair HDLC and LSPI (the LODeq score is 3.94)]. We observed evidence of pleiotropic effects in this region on obesity and insulin-related trait pairs.  相似文献   

3.
Context-dependent genetic effects, including genotype-by-environment and genotype-by-sex interactions, are a potential mechanism by which genetic variation of complex traits is maintained in populations. Pleiotropic genetic effects are also thought to play an important role in evolution, reflecting functional and developmental relationships among traits. We examine context-dependent genetic effects at pleiotropic loci associated with normal variation in multiple metabolic syndrome (MetS) components (obesity, dyslipidemia, and diabetes-related traits). MetS prevalence is increasing in Western societies and, while environmental in origin, presents substantial variation in individual response. We identify 23 pleiotropic MetS quantitative trait loci (QTL) in an F16 advanced intercross between the LG/J and SM/J inbred mouse strains (Wustl:LG,SM-G16; n = 1002). Half of each family was fed a high-fat diet and half fed a low-fat diet; and additive, dominance, and parent-of-origin imprinting genotypic effects were examined in animals partitioned into sex, diet, and sex-by-diet cohorts. We examine the context-dependency of the underlying additive, dominance, and imprinting genetic effects of the traits associated with these pleiotropic QTL. Further, we examine sequence polymorphisms (SNPs) between LG/J and SM/J as well as differential expression of positional candidate genes in these regions. We show that genetic associations are different in different sex, diet, and sex-by-diet settings. We also show that over- or underdominance and ecological cross-over interactions for single phenotypes may not be common, however multidimensional synthetic phenotypes at loci with pleiotropic effects can produce situations that favor the maintenance of genetic variation in populations. Our findings have important implications for evolution and the notion of personalized medicine.  相似文献   

4.
Zhang XS  Wang J  Hill WG 《Genetics》2004,167(3):1475-1492
Although the distribution of frequencies of genes influencing quantitative traits is important to our understanding of their genetic basis and their evolution, direct information from laboratory experiments is very limited. In theory, different models of selection and mutation generate different predictions of frequency distributions. When a large population at mutation-selection balance passes through a rapid bottleneck in size, the frequency distribution of genes is dramatically altered, causing changes in observable quantities such as the mean and variance of quantitative traits. We investigate the gene frequency distribution of a population at mutation-selection balance under a joint-effect model of real stabilizing and pleiotropic selection and its redistribution and thus changes of the genetic properties of metric and fitness traits after the population passes a rapid bottleneck and expands in size. If all genes that affect the trait are neutral with respect to fitness, the additive genetic variance (VA) is always reduced by a bottleneck in population size, regardless of their degree of dominance. For genes that have been under selection, VA increases following a bottleneck if they are (partially) recessive, while the dominance variance increases substantially for any degree of dominance. With typical estimates of mutation parameters, the joint-effect model can explain data from laboratory experiments on the effect of bottlenecking on fitness and morphological traits, providing further support for it as a plausible mechanism for maintenance of quantitative genetic variation.  相似文献   

5.
Differential natural selection acting on populations in contrasting environments often results in adaptive divergence in multivariate phenotypes. Multivariate trait divergence across populations could be caused by selection on pleiotropic alleles or through many independent loci with trait‐specific effects. Here, we assess patterns of association between a suite of traits contributing to life history divergence in the common monkey flower, Mimulus guttatus, and examine the genetic architecture underlying these correlations. A common garden survey of 74 populations representing annual and perennial strategies from across the native range revealed strong correlations between vegetative and reproductive traits. To determine whether these multitrait patterns arise from pleiotropic or independent loci, we mapped QTLs using an approach combining high‐throughput sequencing with bulk segregant analysis on a cross between populations with divergent life histories. We find extensive pleiotropy for QTLs related to flowering time and stolon production, a key feature of the perennial strategy. Candidate genes related to axillary meristem development colocalize with the QTLs in a manner consistent with either pleiotropic or independent QTL effects. Further, these results are analogous to previous work showing pleiotropy‐mediated genetic correlations within a single population of M. guttatus experiencing heterogeneous selection. Our findings of strong multivariate trait associations and pleiotropic QTLs suggest that patterns of genetic variation may determine the trajectory of adaptive divergence.  相似文献   

6.
We used an approach for detecting genotype x environment interactions to detect and characterize genotype x age interaction in longitudinal measures of three well known cardiovascular risk factors: total plasma cholesterol (TC), systolic blood pressure (SBP), and body weight (Wgt). Our objectives were to determine if the same gene or suite of genes influences quantitative variation in each of these phenotypes in the 4th and 6th decades of life, to assess the impact of additive gene effects in these two decades, and to evaluate the stability of pleiotropic relationships among these phenotypes. Using the Framingham Heart Study data, we constructed two cross-sectional samples comprising individuals on whom these phenotypes were measured at ages 30-39 years (Original Cohort: exam 1, Offspring Cohort: exam 2) and at ages 50-59 years (Original Cohort: exam 11, Offspring Cohort: exam 5). We also constructed a longitudinal sample from the cross-sectional sample members for whom measures on these traits were available at both ages (i.e., 4th and 6th decades of life). Patterns of pleiotropy, inferred from genetic correlations between traits, differ between the two age classes. Further, additive genetic variance in SBP during the 4th decade of life is attributable to a different gene or suite of genes than during the 6th. The magnitude of the effect increases for SBP. Variation in TC and Wgt appear to be influenced by the same gene or genes in both decades. The magnitude of the effect is stable for TC, but increases dramatically with age for Wgt.  相似文献   

7.
Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype‐phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix ( G ‐matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G ‐matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G ‐matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G ‐matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy.  相似文献   

8.
The general lack of phenotypic correlation among skeletal nonmetric traits has been interpreted as indicating a lack of genetic correlation among these traits. Nonmetric traits scored on animals in the skeletal collection of rhesus macaques from Cayo Santiago are used to calculate phenotypic, genetic, and environmental correlations between traits. The results show that even when phenotypic correlations are low, there may be large, significant genetic correlations among these traits. The genetic correlation pattern suggests that genes which affect nonmetric trait variation act primarily at a local level in the cranium, even though there are genes with pleiotropic effects on skeletal nonmetric traits throughout the cranium. Environmental and phenotypic correlations do not show this neighborhood pattern of correlation.  相似文献   

9.
We use computer simulations to investigate the amount of genetic variation for complex traits that can be revealed by single-SNP genome-wide association studies (GWAS) or regional heritability mapping (RHM) analyses based on full genome sequence data or SNP chips. We model a large population subject to mutation, recombination, selection, and drift, assuming a pleiotropic model of mutations sampled from a bivariate distribution of effects of mutations on a quantitative trait and fitness. The pleiotropic model investigated, in contrast to previous models, implies that common mutations of large effect are responsible for most of the genetic variation for quantitative traits, except when the trait is fitness itself. We show that GWAS applied to the full sequence increases the number of QTL detected by as much as 50% compared to the number found with SNP chips but only modestly increases the amount of additive genetic variance explained. Even with full sequence data, the total amount of additive variance explained is generally below 50%. Using RHM on the full sequence data, a slightly larger number of QTL are detected than by GWAS if the same probability threshold is assumed, but these QTL explain a slightly smaller amount of genetic variance. Our results also suggest that most of the missing heritability is due to the inability to detect variants of moderate effect (∼0.03–0.3 phenotypic SDs) segregating at substantial frequencies. Very rare variants, which are more difficult to detect by GWAS, are expected to contribute little genetic variation, so their eventual detection is less relevant for resolving the missing heritability problem.  相似文献   

10.
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small‐ to large‐effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non‐stress, as well as salt, osmotic, cold, high‐temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co‐locating. Co‐location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.  相似文献   

11.
Serum thyrotropin (TSH), free thyroxine (T4), and free triiodothyronine (T3) levels illustrate the thyroid function set point, but the interrelations between these have never been characterized in detail. The aim of this study was to examine the associations between TSH and thyroid hormone levels in healthy euthyroid twins and to determine the extent to which the same genes influence more than one of these biochemical traits; 1,380 healthy euthyroid Danish twins (284 monozygotic, 286 dizygotic, 120 opposite-sex twin pairs) were recruited. Genetic and environmental associations between thyroid function measurements were examined using quantitative genetic modeling. In bivariate genetic models, the phenotypic relation between two measurements was divided into genetic and environmental correlations. Free T4 and free T3 levels were positively correlated (r=0.32, P<0.0001). The genetic correlation between serum free T4 and free T3 levels was rg=0.25 (95% CI 0.14-0.35), suggesting that a set of common genes affect both phenotypes (pleiotropy). The correlation between the environmental effects was re=0.41 (0.32-0.50). From this we calculated that the proportion of the correlation between free T4 and free T3 levels mediated by common genetic factors was 48%. Only 7% of the genetic component of serum free T3 levels is shared with serum free T4. Serum TSH and thyroid hormone levels did not share any genetic influences. In conclusion, thyroid hormone levels are partly genetically correlated genes that affect free T4 levels and exert pleiotropic effects on free T3 levels, although most of the genetic variance for these measurements is trait specific.  相似文献   

12.
13.
Clinical-chemical traits are essential when examining the health status of individuals. The aim of this study was to identify quantitative trait loci (QTL) and the associated positional candidate genes affecting clinical-chemical traits in a reciprocal F(2) intercross between Landrace and Korean native pigs. Following an overnight fast, 25 serum phenotypes related to clinical-chemical traits (e.g., hepatic function parameters, renal function parameters, electrolyte, lipids) were measured in >970 F(2) progeny. All experimental samples were subjected to genotyping analysis using 165 microsatellite markers located across the genome. We identified eleven genome-wide significant QTL in six chromosomal regions (SSC 2, 7, 8, 13, 14, and 15) and 59 suggestive QTL in 17 chromosomal regions (SSC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, and 18). We also observed significant effects of reciprocal crosses on some of the traits, which would seem to result from maternal effect, QTL on sex chromosomes, imprinted genes, or genetic difference in mitochondrial DNA. The role of genomic imprinting in clinical-chemical traits also was investigated. Genome-wide analysis revealed a significant evidence for an imprinted QTL in SSC4 affecting serum amylase levels. Additionally, a series of bivariate linkage analysis provided strong evidence that QTL in SSC 2, 13, 15, and 18 have a pleiotropic effect on clinical-chemical traits. In conclusion, our study detected both novel and previously reported QTL influencing clinical-chemical traits in pigs. The identified QTL together with the positional candidate genes identified here could play an important role in elucidating the genetic structure of clinical-chemical phenotype variation in humans and swine.  相似文献   

14.
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI’s Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.  相似文献   

15.
A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.  相似文献   

16.
Understanding the genetic architecture of quantitative traits begins with identifying the genes regulating these traits, mapping the subset of genetically varying quantitative trait loci (QTLs) in natural populations, and pinpointing the molecular polymorphisms defining QTL alleles. Studies in Drosophila have revealed large numbers of pleiotropic genes that interact epistatically to regulate quantitative traits, and large numbers of QTLs with sex-, environment- and genotype-specific effects. Multiple molecular polymorphisms in regulatory regions of candidate genes are often associated with variation for complex traits. These observations offer valuable lessons for understanding the genetic basis of variation for complex traits in other organisms, including humans.  相似文献   

17.
Within a population, only phenotypic variation that is influenced by genes will respond to selection. Genes with pleiotropic effects are known to influence numerous traits, complicating our understanding of their evolution through time. Here we use quantitative genetic analyses to identify and estimate the shared genetic effects between molar size and trunk length in a pedigreed, breeding population of baboons housed at the Southwest National Primate Research Center. While crown area has a genetic correlation with trunk length, specific linear measurements yield different results. We find that variation in molar buccolingual width and trunk length is influenced by overlapping additive genetic effects. In contrast, mesiodistal molar length appears to be genetically independent of body size. This is the first study to demonstrate a significant genetic correlation between tooth size and body size in primates. The evolutionary implications are discussed.  相似文献   

18.
Despite remarkable advances in diagnosis and therapy, ischemic heart disease (IHD) remains a leading cause of morbidity and mortality in industrialized countries. Recent efforts to estimate the influence of genetic variation on IHD risk have focused on predicting individual plasma high-density lipoprotein cholesterol (HDL-C) concentration. Plasma HDL-C concentration (mg/dl), a quantitative risk factor for IHD, has a complex multifactorial etiology that involves the actions of many genes. Single gene variations may be necessary but are not individually sufficient to predict a statistically significant increase in risk of disease. The complexity of phenotype-genotype-environment relationships involved in determining plasma HDL-C concentration has challenged commonly held assumptions about genetic causation and has led to the question of which combination of variations, in which subset of genes, in which environmental strata of a particular population significantly improves our ability to predict high or low risk phenotypes. We document the limitations of inferences from genetic research based on commonly accepted biological models, consider how evidence for real-world dynamical interactions between HDL-C determinants challenges the simplifying assumptions implicit in traditional linear statistical genetic models, and conclude by considering research options for evaluating the utility of genetic information in predicting traits with complex etiologies.  相似文献   

19.
Gardner KM  Latta RG 《Molecular ecology》2007,16(20):4195-4209
We review genetic correlations among quantitative traits in light of their underlying quantitative trait loci (QTL). We derive an expectation of genetic correlation from the effects of underlying loci and test whether published genetic correlations can be explained by the QTL underlying the traits. While genetically correlated traits shared more QTL (33%) on average than uncorrelated traits (11%), the actual number of shared QTL shared was small. QTL usually predicted the sign of the correlation with good accuracy, but the quantitative prediction was poor. Approximately 25% of trait pairs in the data set had at least one QTL with antagonistic effects. Yet a significant minority (20%) of such trait pairs have net positive genetic correlations due to such antagonistic QTL 'hidden' within positive genetic correlations. We review the evidence on whether shared QTL represent single pleiotropic loci or closely linked monotropic genes, and argue that strict pleiotropy can be viewed as one end of a continuum of recombination rates where r=0. QTL studies of genetic correlation will likely be insufficient to predict evolutionary trajectories over long time spans in large panmictic populations, but will provide important insights into the trade-offs involved in population and species divergence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号