首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The effects of two different duration spaceflights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight. Accepted: 8 January 1998  相似文献   

2.
The primary purpose of this investigation was to determine the effects of microgravity on muscle fibers of the predominantly fast-twitch muscles in the rat. Cross sectional area and myosin heavy chain (MHC) composition were assessed in order to establish the acute effects of microgravity associated with spaceflight. The extensor digitorum longus (EDL) and gastrocnemius muscles were removed from 12 male Fisher 344 rats which had undergone 10 days of spaceflight aboard the space shuttle Endeavor and from 12 age- and weight-matched control animals. Both groups of animals received similar amounts of food and water and were synchronized for photoperiods, environmental temperature, and humidity. Significant (P < 0.05) reductions in muscle fiber size were observed in the gastrocnemius (fiber types I, IIA, IIDB, and IIB) and EDL (fiber type IIB) muscles after spaceflight. Significant MHC isoform transformations also resulted during this brief period of microgravity exposure with a significant decrease in MHC IId isoform in the EDL muscle. A significant decrease was also observed in the MHC IId isoform in the superficial (white) component of the gastrocnemius muscle after spaceflight, although no alterations in MHC profile were demonstrated in the deep (red) component of this muscle. These findings highlight the rapid plasticity of skeletal muscle during short-term spaceflight. If such pronounced adaptations to spaceflight also occur in humans, then astronauts are likely to suffer severe decrements in skeletal muscle performance with long-term space flight and upon return to earth after both short- and long-term missions. Thus, countermeasures aimed at slowing or even preventing muscle fiber atrophy are warranted.  相似文献   

3.
Effects of spaceflight and cage design on abdominal muscles of male rodents   总被引:3,自引:0,他引:3  
We examined the effects of a 16-day spaceflight mission on the size of muscle fibers in the rectus abdominis, external oblique and transversus abdominis muscles of adult male Fisher rats. The rats were individually housed in orbit, in contrast to the one previous spaceflight investigation of the same muscles, where the rats were group-housed pregnant females. The cross-sectional area of the muscle fibers was used as a measure of muscle atrophy or hypertrophy. The transversus, which is presumed to be the primary expiratory muscle and consequently works against internal hydrostatic pressures that are not likely to change much between 1 G and weightlessness, did not change in size. However, both the rectus abdominis (a spinal flexor) and the external oblique (a rotator of the torso), which resist gravity in the 1 G environment, showed significant signs of atrophy after extended exposure to microgravity. The atrophy of the external oblique was diametrically opposite to hypertrophy of the same muscle observed in group-housed rodents previously exposed to spaceflight. Although the two missions differed in several factors, such as the gender of the rats and mission duration, we believe that housing of the animals was the key factor that accounted for the different responses of the external oblique. Previous research has shown that group-housed rats in spaceflight exhibited seven times more rotations of their torsos than matched ground controls. Thus unloading of the musculoskeletal system may not be achieved in weightlessness when animals have the freedom to interact with each other.  相似文献   

4.
Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.  相似文献   

5.
Male hypophysectomized rats were initially assigned to a control or an overloaded group that underwent compensatory hypertrophy of plantaris muscles to steady-state levels following removal of synergistic musculature. Plantaris muscle mass of overloaded animals was higher than that of controls by 38% (391 +/- 8 vs 284 +/- 7 mg) and glucocorticoid cytosol specific binding concentrations, using [3H]triamcinolone acetonide (TA) as the labeled steroid, was also significantly higher in hypertrophied muscles (83.3 +/- 3.9 fmol . mg protein-1) than in control muscles 56.3 +/- 3.9 fmol . mg protein-1). Cortisone acetate (CA) was then administered daily subcutaneously in high, 100 mg; intermediate, 10 mg; or low, 1.0 mg . kg-1 body wt doses. Groups of rats were killed after 1/4, 2 days and 7 days. Absolute muscle mass losses after 7 days of CA treatment were approx 80 mg with high doses and 60 mg with intermediate doses in both hypertrophied and control muscles. The low CA dose did not produce atrophy. The absolute depletion of [3H]TA binding activity with CA treatment was always greater in hypertrophied muscles of high and intermediate dose treated than those of their respective controls, but TA binding capacities remained higher in hypertrophied muscles than in controls at almost all time points in all treatment groups. Unlike previous findings in which the simultaneous initiation of overload prevented glucocorticoid induced muscle wasting, no resistance to the effect of CA treatment was observed when treatment was begun after hypertrophy had occurred.  相似文献   

6.
Hindlimb unloading (HU) in rats induces severe atrophy and a slow-to-fast phenotype transition in postural slow-twitch muscles, as occurs in human disuse conditions, such as spaceflight or bed rest. In rats, a reduction of soleus muscle weight and a decrease of cross-sectional area (CSA) were observed as signs of atrophy. An increased expression of the fast-isoform of myosin heavy chain (MHC) showed the phenotype transition. In parallel the resting cytosolic calcium concentration (restCa) was decreased and the resting chloride conductance (gCl), which regulates muscle excitability, was increased toward the values of the fast-twitch muscles. Here, we investigated the possible role of taurine, which is known to modulate calcium homeostasis and gCl, in the restoration of muscle impairment due to 14-days-HU. We found elevated taurine content and higher expression of the taurine transporter TauT in the soleus muscle as compared to the fast-twitch extensor digitorum longus (EDL) muscle of control rats. Taurine level was reduced in the HU soleus muscle, although, TauT expression was not modified. Taurine oral supplementation (5?g/kg) fully prevented this loss, and preserved resting gCl and restCa together with the slow MHC phenotype. Taurine supplementation did not prevent the HU-induced drop of muscle weight or fiber CSA, but it restored the expression of MURF-1, an atrophy-related gene, suggesting a possible early protective effect of taurine. In conclusion, taurine prevented the HU-induced phenotypic transition of soleus muscle and might attenuate the atrophic process. These findings argue for the beneficial use of taurine in the treatment of disuse-induced muscle dysfunction.  相似文献   

7.
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.  相似文献   

8.
The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.  相似文献   

9.
Following spinal cord injury, muscles below the level of injury develop variable degrees of disuse atrophy. The present study assessed the physiological changes of the expiratory muscles in a cat model of spinal cord injury. Muscle fiber typing, cross-sectional area, muscle weight, and changes in pressure-generating capacity were assessed in five cats spinalized at the T(6) level. Airway pressure (P)-generating capacity was monitored during lower thoracic spinal cord stimulation before and 6 mo after spinalization. These parameters were also assessed in five acute animals, which served as controls. In spinalized animals, P fell from 41 +/- l to 28 +/- 3 cm H2O (means +/- SE; P < 0.001). Muscle weight of the external oblique, internal oblique, transversus abdominis, and internal intercostal muscles decreased significantly (P < 0.05 for each). Muscle weight of the external oblique, internal oblique, transversus abdominis, and internal intercostal, but not rectus abdominis (RA), correlated linearly with P (r > 0.7 for each; P < 0.05 for each). Mean muscle fiber cross-sectional area of these muscles was significantly smaller (P < 0.05 for each; except RA) and also correlated linearly with P (r > 0.55 for each; P < 0.05 for each, except RA). In spinalized animals, the expiratory muscles demonstrated a significant increase in the population of fast muscle fibers. These results indicate that, following spinalization, 1) the expiratory muscles undergo significant atrophy and fiber-type transformation and 2) the P-generating capacity of the expiratory muscles falls significantly secondary to reductions in muscle mass.  相似文献   

10.
Skeletal muscle fibers are multinucleated. Each myonucleus regulates gene products and protein expression in only a restricted portion of the muscle fiber, the myonuclear domain (MND). In the rat diaphragm muscle (DIAm), corticosteroid (CoS) treatment causes atrophy of fibers containing myosin heavy chain (MHC): MHC2X and/or MHC2B. We hypothesized that DIAm fiber MND size is maintained during CoS-induced atrophy. Adult male rats received methylprednisolone for 11 days at 1 (CoS-Low, n = 8) or 8 mg x kg(-1) x day(-1) (CoS-High, n = 8). Age-matched (CTL-AgeM, n = 8), sham-operated (SHAM-AgeM, n = 8), and weight-matched (CTL-WtM, n = 8) animals served as controls. In single DIAm fibers, cross-sectional area (CSA), MND size, and MHC expression were determined. Fiber CSA and MND size were similar in CTL-AgeM and SHAM-AgeM groups. Only fibers containing MHCslow or MHC2A displayed smaller CSA in CTL-WtM than in CTL-AgeM and SHAM-AgeM groups, and MND size was reduced in all fibers. Thus fibers containing MHCslow and MHC2A maintain the number of myonuclei, whereas MHC2X or MHC2B fibers show loss of myonuclei during normal muscle growth. Both CoS groups displayed smaller CSA and MND size than CTL-AgeM and SHAM-AgeM groups. However, compared with CTL-WtM DIAm fibers, only fibers containing MHC2X or MHC2B displayed reduced CSA and MND size after CoS treatment. Thus little, if any, loss of myonuclei was associated with CoS-induced atrophy of MHC2X or MHC2B DIAm fibers. In summary, MND size does not appear to be regulated during CoS-induced DIAm atrophy.  相似文献   

11.
Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.  相似文献   

12.
To assess the characteristics and function of the muscles of the anterolateral abdominal wall, we have examined the isometric contractile properties of bundles of canine rectus abdominis (RA) and external oblique (EO) muscles. In addition, we have related the lengths of these muscles measured sonometrically in vivo at supine functional residual capacity (FRC) to in vitro optimal force-producing length (Lo). We also investigated the action of the abdominal muscles on the displacement of costal and crural diaphragm. We found that 1) contraction time of RA was longer and that the RA developed greater force than the EO at submaximal stimulation frequencies; 2) maximal tetanic force and the active length-tension curves were similar in both abdominal muscles; 3) on passive stretch, the compliance of the RA was one-third that of the EO; 4) at supine FRC, the EO is operating at 83% of Lo, whereas the RA is operating at 105% of Lo; 5) stimulation of either RA or EO (abdominal pressure of 15 cmH2O) lengthened the costal and crural diaphragm toward their Lo values, with greater crural excursion occurring than costal. We conclude that the RA is well suited for restraining the abdominal viscera in prone quadrupeds, whereas the EO is better designed to assist expiration. Stimulation of both muscles improves in situ diaphragmatic operating length.  相似文献   

13.
The present study examined the effects of elastase-induced emphysema on the structure of the external oblique and transverse abdominis muscles and a non-respiratory muscle, the extensor digitorum longus. Muscle structure was assessed from the cross-sectional area (CSA) and percent of individual fiber types in histochemically stained sections and from the number of sarcomeres arranged in series along the length of individual fibers. Data were obtained in eight hamsters with emphysema and nine saline-injected controls. In the normal (control) animals the external oblique was thicker but contained fewer sarcomeres than the transverse abdominis. Fiber size was similar in the two muscles. In the transverse abdominis the percents of fast-glycolytic and fast-oxidative fibers were greater and smaller, respectively, than in the external oblique. Lung volume of emphysematous hamsters was 168% of control values (P less than 0.001). In emphysematous compared with control animals, the CSA of fast-twitch fibers in the external oblique and transverse abdominis was significantly reduced. Fiber length and sarcomere number were significantly decreased in the transverse abdominis but not in the external oblique in emphysematous hamsters. In contrast, fiber size and composition of the extensor digitorum longus was similar in emphysematous and control animals. These data indicate that cellular responses of the ventilatory muscles to chronic hyperinflation and altered thoracic geometry induced by emphysema are not present in limb skeletal muscle. We speculate that changes in fiber length and CSA of fast fibers in the abdominal expiratory muscles reflect responses to chronic alterations in the mechanics of breathing that may affect muscle load, length, or the pattern of activity.  相似文献   

14.
Influence of spaceflight on rat skeletal muscle   总被引:1,自引:0,他引:1  
The size, succinate dehydrogenase (SDH) and alpha-glycerolphosphate dehydrogenase (GPD) activities, and alkaline myofibrillar adenosinetriphosphatase (ATPase) staining properties were determined from quantitative histochemical analyses of single fibers from five hindlimb muscles of six male rats exposed to a 7-day National Aeronautics and Space Administration spaceflight mission (SL-3). These same properties were determined in a group of ground-based control rats housed under simulated environmental conditions. The wet weight of each of the flight muscles was significantly reduced relative to control. However, the loss of mass varied from 36% in the soleus to 15% in the extensor digitorum longus. The cross-sectional areas of fibers in the flight muscles also were reduced, except for the dark ATPase fibers in the medial gastrocnemius. The greatest relative fiber atrophy occurred in the muscles with the highest proportion of light ATPase fibers. An increase in the percentage of dark ATPase fibers also was observed in flight muscles with a predominance of light ATPase fibers. Also, there was an increase in the biochemically determined myofibrillar ATPase activity of tissue sections of the flight soleus. No changes in histochemical or biochemical measures of ATPase activity were observed in the flight extensor digitorum longus. In general, the SDH activity of flight muscles was maintained, whereas GPD activity either was maintained or increased. Based on a metabolic profile of ATPase, SDH, and GPD, there was an increase in the proportion of fast oxidative-glycolytic fibers in some muscles.  相似文献   

15.
In the Neurolab mission, we found that spaceflight affects the development of the aortic baroreflex system and the body weight of the flight rats was significantly lighter [correction of lightess] than that of the control group. The aim of this study is to examine the structural and functional development in various tissues and organs. One hundred and eighteen nine-day old rats and seven fifteen-day old rats, which were launched at these ages and nursed by their dams in the space shuttle Columbia for 16 days, were served for this study. Two hundred and twenty one neonates were used as the ground controls (VIV: vivarium and AGC: asynchronous ground controls). On the landing day after they returned to the earth, the rats were perfused with a fixative under deep urethane anesthesia, and the organs were weighed and the ratio of the organ weight to the body weight was calculated. Six animals of the nine-day old group were reared on the ground for 30 more days after landing and also examined in the same protocol as the landing-day-examination. The organs obtained to examine were heart, lung, spleen, thymus, adrenal glands, kidney, liver, small intestine, large intestine, mesentery, pancreas, testis and ovary. Paraffin sections were made from some organ tissues and prepared for HE staining and immunohistochemistry. We compared these organs in the flight rat with those in the ground controls. All organs except the lung of nine-day old group were significantly smaller. In the ratio of organ weight to body weight, the lung and heart were significantly larger. The weight and ratio of the liver showed no significant difference. The thymus, spleen, mesentery and pancreas were smaller in the weight and the ratio. There were no differences in the body weight among 30-day reared groups, but the lung in the flight group is significantly heavier than the control groups and thymus also tends to be relatively heavy. In flight rats of the fifteen-day group, the kidney was heavy and the ovary was light as compared to the controls. The adipose tissue was macroscopically little found around the thoracic and abdominal organs in all rats of the flight group. These results suggest that the organs related to oxygen supply like as the lung and heart have priority in development over the mesentery and immune system organs even during spaceflight. Lightness of the mesentery in space rats is due to small contents of adipose tissues, and may reflect amounts of the food taken by the flight dams. Lightness of the organs like as the thymus, spleen and pancreas suggests that spaceflight may affect the immune system and also affect continuously the lung and thymus development even after landing.  相似文献   

16.
The relative levels of pelvic floor muscle (PFM) activation and pressure generated by maximum voluntary PFM contractions were investigated in healthy continent women. The normal sequence of abdominal and PFM activation was determined.Fifteen women performed single and repeated maximum voluntary PFM contractions in supine, sitting and standing. PFM electromyographic (EMG) signals and associated intra-vaginal pressure data were recorded simultaneously. Surface EMG data were recorded from rectus abdominus (RA), external obliques (EO), internal obliques (IO) and transversus abdominus (TA).Abdominal and PFM EMG and intra-vaginal pressure amplitudes generated during voluntary PFM contractions were not different among the positions. Muscle activation sequence differed by position. In supine, EO activation preceded all other muscles by 27 ms (p = 0.043). In sitting, all of the muscles were activated simultaneously. In standing, RA and EO were activated 11 and 17 ms, respectively, prior to the PFMs and TA and IO were activated 10 and 12 ms, respectively, after the PFMs (p  0.001).The results suggest that women are able to perform equally strong PFM contractions in supine, sitting and standing, however the pattern of abdominal and PFM activation varies by position. These differences may be related to position-dependent urine leakage in women with stress incontinence.  相似文献   

17.
Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.  相似文献   

18.
Cross-sectional area (CSA), peak Ca2+-activated force (Po), fiber specific force (Po/CSA), and unloaded shortening velocity (Vo) were measured in slow-twitch [containing type I myosin heavy chain (MHC)] and fast-twitch (containing type II MHC) chemically skinned soleus muscle fiber segments obtained from three strains of weight-bearing and 7-day hindlimb-suspended (HS) mice. HS reduced soleus slow MHC content (from approximately 50 to approximately 33%) in CBA/J and ICR strains without affecting slow MHC content in C57BL/6 mice ( approximately 20% of total MHC). Two-way ANOVA revealed HS-induced reductions in CSA, Po, and Po/CSA of slow and fast fibers from all strains. Fiber Vo was elevated post-HS, but not consistently across strains. No MHC x HS treatment interactions were observed for any variable for C57BL/6 and CBA/J mice, and the two significant interactions found for the ICR strain (CSA, Po) appeared related to inherent pre-HS differences in slow vs. fast fiber CSA. In the mouse HS models studied here, fiber atrophy and contractile dysfunction were partially dependent on animal strain and generally independent of fiber MHC isoform content.  相似文献   

19.
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.  相似文献   

20.
Considerable data has been collected on the response of hindlimb muscles to unloading due to both spaceflight and hindlimb suspension. One generalized response to a reduction in load is muscle fiber atrophy, although not all muscles respond the same. For example, predominantly slow extensor muscles like the Sol exhibit a large reduction in fiber size to unloading, while fast extensors like the plantaris and fast flexors like the tibialis anterior show little, if any, atrophy. Our understanding of how muscles respond to microgravity, however, has come primarily from the examination of hindlimb muscles in the unrestrained rat in space. The non-human primate spaceflight paradigm differs considerably from the rodent paradigm in that the monkeys are restrained, usually in a sitting position, while in space. Recently, we examined the effects of microgravity on muscles of the Rhesus monkey by taking biopsies of selected hindlimb muscles prior to and following spaceflights of 14 and 12 day durations (Cosmos 2044 and 2229). Our results revealed that the monkey's response to microgravity differs from that of the rat. The apparent differences in the atrophic response of the hindlimb muscles of the monkey and rat to spaceflight may be attributed to 1) a species difference, 2) a difference in the manner in which the animals were maintained during the flight (i.e., chair restraint or "free-floating"), and/or 3) an ability of the monkeys to counteract the effects of spaceflight with resistive exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号