首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have previously identified a protein with Mr approximately 40,000 (p40) that binds with high specificity and affinity to the 5'-untranslated leaders of mitochondrial mRNAs in yeast. Here we show that this protein is abundant, comprising about 0.4% of total mitochondrial protein. p40 is present in a cytoplasmic (rho degree) petite mutant that lacks mitochondrial protein synthesis and is therefore nuclear encoded. p40 can be detected by immunological techniques in cell lysates of several different pet mutants, specifically disturbed in the translation of individual mitochondrial mRNAs. It is thus not one of the translation factors defined by any of these mutations. In the case of a pet111 mutant, which is specifically blocked in the translation of COX2 mRNA, extracts still display COX2 mRNA binding activity, indicating that p40 complex formation in vitro is not dependent on the presence of PET111.  相似文献   

4.
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an octamer containing two types of homologous subunits. Ligand-binding analyses were conducted to examine effects of residue changes in putative catalytic and regulatory isocitrate-binding sites respectively contained in IDH2 and IDH1 subunits. Replacement of homologous serine residues in either subunit site, S98A in IDH2 or S92A in IDH1, was found to reduce by half the total number of holoenzyme isocitrate-binding sites, confirming a correlation between detrimental effects on isocitrate binding and respective kinetic defects in catalysis and allosteric activation by AMP. Replacement of both serine residues eliminates isocitrate binding and measurable catalytic activity. The putative isocitrate-binding sites of IDH1 and IDH2 contain five identical and four nonidentical residues. Reciprocal replacement of the four nonidentical residues in either or both subunits (A108R, F136Y, T241D, and N245D in IDH1 and/or R114A, Y142F, D248T, and D252N in IDH2) was found to be permissive for isocitrate binding. This provides further evidence for two types of binding sites in IDH, although the authentic residues have been shown to be necessary for normal kinetic contributions. Finally, the mutant enzymes with residue replacements in the IDH1 site were found to be unable to bind AMP, suggesting that allosteric activation is dependent both upon binding of isocitrate at the IDH1 site and upon the changes in the enzyme normally elicited by this binding.  相似文献   

5.
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an allosterically regulated octameric enzyme composed of two types of homologous subunits designated IDH1 and IDH2. Based on sequence comparisons and structural models, both subunits are predicted to have adenine nucleotide binding sites. This was tested by alanine replacement of residues in putative sites in each subunit. Targets included adjacent aspartate/isoleucine residues implicated as important for determining cofactor specificity in related dehydrogenases and a residue in each IDH subunit in a position occupied by histidine in other cofactor binding sites. The primary kinetic effects of D286A/I287A and of H281A replacements in IDH2 were found to be a dramatic reduction in apparent affinity of the holoenzyme for NAD(+) and a concomitant reduction in V(max). Ligand binding assays also showed that the H281A mutant enzyme fails to bind NAD(+) under conditions that are saturating for the wild-type enzyme. In contrast, the primary effect of corresponding D279A/D280A and of R274A replacements in IDH1 is a reduction in holoenzyme binding of AMP, with concomitant alterations in kinetic and isocitrate binding properties normally associated with activation by this allosteric effector. These results suggest that the nucleotide cofactor binding site is primarily contributed by the IDH2 subunit, whereas the homologous nucleotide binding site in IDH1 has evolved for regulatory binding of AMP. These results are consistent with previous studies demonstrating that the catalytic isocitrate binding sites are comprised of residues primarily contributed by IDH2, whereas sites for regulatory binding of isocitrate are contributed by analogous residues of IDH1. In this study, we also demonstrate that a prerequisite for holoenzyme binding of NAD(+) is binding of isocitrate/Mg(2+) at the IDH2 catalytic site. This is comparable to the dependence of AMP binding upon binding of isocitrate at the IDH1 regulatory site.  相似文献   

6.
Yeast NAD(+)-specific isocitrate dehydrogenase is an allosterically regulated octameric enzyme composed of four each of two homologous but nonidentical subunits designated IDH1 and IDH2. Models based on the crystallographic structure of Escherichia coli isocitrate dehydrogenase suggest that both yeast subunits contain isocitrate-binding sites. Identities in nine residue positions are predicted for the IDH2 site whereas four of the nine positions differ between the IDH1 and bacterial enzyme sites. Thus, we speculate that the IDH2 site is catalytic and that the IDH1 site may bind but not catalytically alter isocitrate. This was examined by kinetic analyses of enzymes with independent and concerted replacement of residues in each yeast IDH subunit site with the residues that differ in the other subunit site. Mutant enzymes were expressed in a yeast strain containing disrupted IDH1 and IDH2 loci and affinity-purified for kinetic analyses. The primary effects of various residue replacements in IDH2 were reductions of 30->300-fold in V(max) values, consistent with the catalytic function of this subunit. In contrast, replacement of all four residues in IDH1 produced a 17-fold reduction in V(max) under the same assay conditions, suggesting that the IDH1 site is not the primary catalytic site. However, single or multiple residue replacements in IDH1 uniformly increased half-saturation concentrations for isocitrate, implying that isocitrate can be bound at this site. Both subunits appear to contribute to cooperativity with respect to isocitrate, but AMP activation is lost only with residue replacements in IDH1. Overall, results are consistent with isocitrate binding by IDH2 for catalysis and with isocitrate binding by IDH1 being a prerequisite for allosteric activation by AMP. The effects of residue substitutions on enzyme function in vivo were assessed by analysis of various growth phenotypes. Results indicate a positive correlation between the level of IDH catalytic activity and the ability of cells to grow with acetate or glycerol as carbon sources. In addition, lower levels of activity are associated with increased production of respiratory-deficient (petite) segregants.  相似文献   

7.
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an octameric enzyme composed of four each of regulatory IDH1 and catalytic IDH2 subunits that share 42% sequence identity. IDH2 contains catalytic isocitrate/Mg2+ and NAD+ binding sites whereas IDH1 contains homologous binding sites, respectively, for cooperative binding of isocitrate and for allosteric binding of AMP. Ligand binding is highly ordered in vitro, and IDH exhibits the unusual property of half-site binding for all ligands. The structures of IDH solved in the absence or presence of ligands have shown: (a) a heterodimer to be the basic structural/functional unit of the enzyme, (b) the organization of heterodimers to form tetramer and octamer structures, (c) structural differences that may underlie cooperative and allosteric regulatory mechanisms, and (d) the possibility for formation of a disulfide bond that could reduce catalytic activity. In vivo analyses of mutant enzymes have elucidated the physiological importance of catalytic activity and allosteric regulation of this tricarboxylic acid cycle enzyme. Other studies have established the importance of a disulfide bond in regulation of IDH activity in vivo, as well as contributions of this bond to the property of half-site ligand binding exhibited by the wild-type enzyme.  相似文献   

8.
Yeast mitochondrial NAD(+)-specific isocitrate dehydrogenase is an octamer composed of four each of two nonidentical but related subunits designated IDH1 and IDH2. IDH2 was previously shown to contain the catalytic site, whereas IDH1 contributes regulatory properties including cooperativity with respect to isocitrate and allosteric activation by AMP. In this study, interactions between IDH1 and IDH2 were detected using the yeast two-hybrid system, but interactions between identical subunit polypeptides were not detected with this or other methods. A model for heterodimeric interactions between the subunits is therefore proposed for this enzyme. A corollary of this model, based on the three-dimensional structure of the homologous enzyme from Escherichia coli, is that some interactions between subunits occur at isocitrate binding sites. Based on this model, two residues (Lys-183 and Asp-217) in the regulatory IDH1 subunit were predicted to be important in the catalytic site of IDH2. We found that individually replacing these residues with alanine results in mutant enzymes that exhibit a drastic reduction in catalysis both in vitro and in vivo. Also based on this model, the two analogous residues (Lys-189 and Asp-222) of the catalytic IDH2 subunit were predicted to contribute to the regulatory site of IDH1. A K189A substitution in IDH2 was found to produce a decrease in activation of the enzyme by AMP and a loss of cooperativity with respect to isocitrate. A D222A substitution in IDH2 produces similar regulatory defects and a substantial reduction in V(max) in the absence of AMP. Collectively, these results suggest that the basic structural/functional unit of yeast isocitrate dehydrogenase is a heterodimer of IDH1 and IDH2 subunits and that each subunit contributes to the isocitrate binding site of the other.  相似文献   

9.
Yeast NAD+-specific isocitrate dehydrogenase (IDH) is an octamer of four IDH1 and four IDH2 subunits, and the basic structural unit of the enzyme is an IDH1/IDH2 heterodimer. To investigate one aspect of the interaction between IDH1 and IDH2, residues in a hydrophobic region at the heterodimer interface (Val-216, Ser-220, and Val-224 in IDH1; Ile-221, Val-225, and Val-229 in IDH2) were replaced by alanine residues in each and in both subunits. Gel filtration and sedimentation velocity analyses demonstrated that the residue substitutions do not disrupt the octameric structure of IDH. However, these substitutions produce novel kinetic properties including, with respect to cofactor, positive allosteric regulation by AMP and cooperativity in the absence of AMP. These allosteric properties are also apparent in NAD+-binding experiments. Despite substantial measurable activity for the mutant enzyme containing residue substitutions in both subunits, expression of this enzyme produces growth phenotypes indicative of IDH dysfunction in vivo.  相似文献   

10.
Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg2+. A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors'' selectivity for the mutant enzyme.  相似文献   

11.
The levels of replication-dependent histone mRNAs are coordinately regulated with DNA synthesis. A major regulatory step in histone mRNA metabolism is regulation of the half-life of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is recognized by the stem-loop binding protein (SLBP). SLBP is required for histone mRNA processing, as well as translation. We show here, using histone mRNAs whose translation can be regulated by the iron response element, that histone mRNAs need to be actively translated for their rapid degradation following the inhibition of DNA synthesis. We also demonstrate the requirement for translation using a mutant SLBP which is inactive in translation. Histone mRNAs are not rapidly degraded when DNA synthesis is inhibited or at the end of S phase in cells expressing this mutant SLBP. Replication-dependent histone mRNAs have very short 3' untranslated regions, with the stem-loop located 30 to 70 nucleotides downstream of the translation termination codon. We show here that the stability of histone mRNAs can be modified by altering the position of the stem-loop, thereby changing the distance from the translation termination codon.  相似文献   

12.
Isocitrate dehydrogenase (IDH)(1) of Escherichia coli is regulated by a bifunctional protein, IDH kinase/phosphatase. In this paper, we demonstrate that the effectors controlling these activities belong to two distinct classes that differ in mechanism and in the locations of their binding sites. NADPH and isocitrate are representative members of one of these effector classes. NADPH inhibits both IDH kinase and IDH phosphatase, whereas isocitrate inhibits only IDH kinase. Isocitrate can "activate" IDH phosphatase by reversing product inhibition by dephospho-IDH. Mutations in icd, which encodes IDH, had parallel effects on the binding of these ligands to the IDH active site and on their effects on IDH kinase and phosphatase, indicating that these ligands regulate IDH kinase/phosphatase through the IDH active site. Kinetic analyses suggested that isocitrate and NADPH prevent formation of the complex between IDH kinase/phosphatase and its protein substrate. AMP, 3-phosphoglycerate, and pyruvate represent a class of regulatory ligands that is distinct from that which includes isocitrate and NADPH. These ligands bind directly to IDH kinase/phosphatase, a conclusion which is supported by the observation that they inhibit the IDH-independent ATPase activity of this enzyme. These effector classes can also be distinguished by the observation that mutant derivatives of IDH kinase/phosphatase expressed from aceK3 and aceK4 exhibited dramatic changes in their responses to AMP, 3-phosphoglycerate, and pyruvate but not to NADPH and isocitrate.  相似文献   

13.
To examine normal and aberrant translation initiation in Saccharomyces cerevisiae mitochondria, we fused the synthetic mitochondrial reporter gene ARG8m to codon 91 of the COX2 coding sequence and inserted the chimeric gene into mitochondrial DNA (mtDNA). Translation of the cox2(1-91)::ARG8m mRNA yielded a fusion protein precursor that was processed to yield wild-type Arg8p. Thus mitochondrial translation could be monitored by the ability of mutant chimeric genes to complement a nuclear arg8 mutation. As expected, translation of the cox2(1-91)::ARG8m mRNA was dependent on the COX2 mRNA-specific activator PET111. We tested the ability of six triplets to function as initiation codons in both the cox2(1-91)::ARG8m reporter mRNA and the otherwise wild-type COX2 mRNA. Substitution of AUC, CCC or AAA for the initiation codon abolished detectable translation of both mRNAs, even when PET111 activity was increased. The failure of these mutant cox2(1-91)::ARG8m genes to yield Arg8p demonstrates that initiation at downstream AUG codons, such as COX2 codon 14, does not occur even when normal initiation is blocked. Three mutant triplets at the site of the initiation codon supported detectable translation, with efficiencies decreasing in the order GUG, AUU, AUA. Increased PET111 activity enhanced initiation at AUU and AUA codons. Comparisons of expression, at the level of accumulated product, of cox2(1-91)::ARG8m and COX2 carrying these mutant initiation codons revealed that very low-efficiency translation can provide enough Cox2p to sustain significant respiratory growth, presumably because Cox2p is efficiently assembled into stable cytochrome oxidase complexes.  相似文献   

14.
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain.  相似文献   

15.
16.
J. J. Mulero  T. D. Fox 《Genetics》1993,133(3):509-516
PET111 is a yeast nuclear gene specifically required for the expression of the mitochondrial gene COX2, encoding cytochrome c oxidase subunit II (coxII). Previous studies have shown that PET111 activates translation of the COX2 mRNA. To map the site of PET111 action we have constructed, in vitro, genes coding for chimeric mRNAs, introduced them into mitochondria by transformation and studied their expression. Translation of a chimeric mRNA with the 612-base 5'-untranslated leader of the COX3 mRNA fused precisely to the structural gene for the coxII-precursor protein is independent of PET111, but does require a COX3 mRNA-specific translational activator known to work on the COX3 5'-leader. This result demonstrates that PET111 is not required for any posttranslational step. Translation of a chimeric mRNA with the 54-base 5'-leader of the COX2 mRNA fused precisely to the structural gene for cytochrome c oxidase subunit III was dependent on PET111 activity. These results demonstrate that PET111 acts specifically at a site in the short COX2 5'-leader to activate translation of downstream coding sequences.  相似文献   

17.
18.
19.
The ability to replace wild-type mitochondrial DNA sequences in yeast with in vitro-generated mutations has been exploited to study the mechanism by which the nuclearly encoded PET111 protein specifically activates translation of the mitochondrially coded COX2 mRNA. We have generated three mutations in vitro that alter the COX2 mRNA 5'-untranslated leader (UTL) and introduced them into the mitochondrial genome, replacing the wild-type sequence. None of the mutations significantly affected the steady-state level of COX2 mRNA. Deletion of a single base at position -24 (relative to the translation initiation codon) in the 5'-UTL (cox2-11) reduced COX2 mRNA translation and respiratory growth, whereas insertion of four bases in place of the deleted base (cox2-12) and deletion of bases -30 to -2 (cox2-13) completely blocked both. Six spontaneous nuclear mutations were selected as suppressors of the single-base 5'-UTL deletion, cox2-11. One of these mapped to PET111 and was shown to be a missense mutation that changed residue 652 from Ala to Thr. This suppressor, PET111-20, failed to suppress the 29-base deletion, cox2-13, but very weakly suppressed the insertion mutation, cox2-12. PET111-20 also enhanced translation of a partially functional COX2 mRNA with a wild-type 5'-UTL but a mutant initiation codon. Although overexpression of the wild-type PET111 protein caused weak suppression of the single-base deletion, cox2-11, the PET111-20 suppressor mutation did not function simply by increasing the level of the protein. These results demonstrate an intimate functional interaction between the translational activator protein and the mRNA 5'-UTL and suggest that they may interact directly.  相似文献   

20.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号