共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Use of a bacterial expression vector to identify the gene encoding a major core protein of vaccinia virus. 总被引:1,自引:8,他引:1 下载免费PDF全文
The DNA sequence of a vaccinia virus late gene contains an open reading frame that corresponds to the 28,000-dalton (28K) polypeptide made by in vitro translation of hybrid-selected mRNA. To further characterize the protein product of this late gene, we cloned a segment of DNA containing part of the open reading frame into a bacterial expression vector. The fusion protein produced from this vector, containing 151 amino acids of the predicted vaccinia virus protein, was used to immunize rabbits. The resulting antiserum specifically bound to a major 25K structural protein that is localized in the core of vaccinia virions, as well as to a 28K protein found in infected cells. Pulse-chase experiments indicated that the 25K core protein is originally made as a 28K precursor. 相似文献
3.
The nucleotide sequence of the vaccinia virus open reading frame B1 predicts a polypeptide with significant sequence similarity to the catalytic domain of known protein kinases. To determine whether the B1R polypeptide is a protein kinase, we have expressed it in bacteria as a fusion with glutathione S-transferase. Affinity-purified preparations of the fusion protein were found to undergo autophosphorylation and also phosphorylated the exogenous substrates casein and histone H1. Mutation of lysine 41 to glutamine within the conserved kinase catalytic domain II abrogated protein kinase activity on all three protein substrates, supporting the notion that the protein kinase activity is inherent to the B1R polypeptide. Casein and histone H1 were phosphorylated on serine and threonine residues. The B1R fusion protein was phosphorylated on a threonine residue(s) by an apparently intramolecular mechanism. The autophosphorylation reaction resulted in phosphorylation of the glutathione S-transferase portion of the fusion and not the protein kinase domain. The protein kinase activity of B1R was specific for ATP as the phosphate donor; GTP was not utilized to a detectable extent. Immunoblotting experiments with anti-B1R antiserum showed that the protein kinase is located in the virion particle. Chromatography of virion extracts resulted in separation of the B1R protein kinase from the bulk of the total protein kinase activity, indicating that multiple protein kinases are present in the virion particle and that B1R is distinct from the previously described vaccinia virus-associated protein kinase. 相似文献
4.
Maturation of vaccinia virus (VV) core proteins is required for the production of infectious virions. The VV G1L and I7L gene products are the leading candidates for the viral core protein proteinase (vCPP). Using transient-expression assays, data were obtained to demonstrate that the I7L gene product and its encoded cysteine proteinase activity are responsible for vCPP activity. 相似文献
5.
O I Riazankina S N Shchelkunov A I Muravlev N V Cheshenko N A Chikaev E G Malygin 《Molekuliarnaia biologiia》1990,24(4):977-983
Vaccinia virus gene encoding 36K protein was cloned in pUR290 bacterial expressing vector and resulted in the synthesis of a chimeric protein in E. coli. The chimeric protein consists of beta-galactosidase and virus protein in C-termini. It has virus antigen specificity. By monospecific antibody 36K protein of vaccinia virus was determined to be non-virion. It is localized in the cytoplasm of infected cells. 相似文献
6.
The previously unstudied vaccinia virus gene I2L is conserved in all orthopoxviruses. We show here that the 8-kDa I2 protein is expressed at late times of infection, is tightly associated with membranes, and is encapsidated in mature virions. We have generated a recombinant virus in which I2 expression is dependent upon the inclusion of tetracycline in the culture medium. In the absence of I2, the biochemical events of the viral life cycle progress normally, and virion morphogenesis culminates in the production of mature virions. However, these virions show an ~400-fold reduction in specific infectivity due to an inability to enter target cells. Several proteins that have been previously identified as components of an essential entry/fusion complex are present at reduced levels in I2-deficient virions, although other membrane proteins, core proteins, and DNA are encapsidated at normal levels. A preliminary structure/function analysis of I2 has been performed using a transient complementation assay: the C-terminal hydrophobic domain is essential for protein stability, and several regions within the N-terminal hydrophilic domain are essential for biological competency. I2 is thus yet another component of the poxvirus virion that is essential for the complex process of entry into target cells. 相似文献
7.
Vaccinia virus gene H5R encodes a protein that is phosphorylated by the multisubstrate vaccinia virus B1R protein kinase. 总被引:2,自引:3,他引:2 下载免费PDF全文
Vaccinia virus gene B1R encodes a protein kinase, the previously identified substrates of which include the proteins S2 and Sa of 40S ribosomal subunits. This work characterizes another substrate of the B1R kinase: a 36-kDa protein induced at the early stage of infection. Partially purified 36-kDa protein, eluted from a single-stranded DNA-cellulose column by 0.5 M NaCl, was separated by two-dimensional gel electrophoresis. Phosphorylation in vitro yielded multiple forms of the 36-kDa protein with approximate isoelectric points (pI) of 5.5, 5.7, 5.9, and 6.3, in addition to the apparently unphosphorylated form with a pI of approximately 6.8. The tryptic peptides derived from 36-kDa proteins with pI values of 5.7, 5.9, and 6.3 yielded almost identical high-pressure liquid chromatography profiles, strongly suggesting that the 36-kDa protein was modified by the phosphorylation of at least four sites, which were characterized as threonine residues. The amino acid sequence of several tryptic peptides derived from the 36-kDa protein showed that the 36-kDa protein was encoded by gene H5R of vaccinia virus. Consistent with this, the B1R kinase--either expressed in Escherichia coli or highly purified from HeLa cells--phosphorylated a recombinant trpE-H5R fusion protein in vitro. Fingerprints of the trpE-H5R and 36-kDa proteins phosphorylated by recombinant B1R kinase revealed common sites of phosphorylation, although some tryptic peptides were specific to either protein. Comparison was made of fingerprints of tryptic phosphopeptides derived from 36-kDa single-stranded DNA-binding protein labelled in vivo or in vitro. A common subset of peptides was observed, suggesting that some sites on H5R protein are phosphorylated by the B1R kinase in infected cells. These results suggest that some of the multiple threonine sites in the H5R protein are phosphorylated in vivo by the B1R protein kinase. 相似文献
8.
9.
10.
11.
12.
13.
The vaccinia virus I3L gene encodes a single-stranded DNA-binding protein which may play a role in viral replication and genetic recombination. We have purified native and recombinant forms of gpI3L and characterized both the DNA-binding reaction and the structural properties of DNA-protein complexes. The purified proteins displayed anomalous electrophoretic properties in the presence of sodium dodecyl sulfate, behaving as if they were 4-kDa larger than the true mass. Agarose gel shift analysis was used to monitor the formation of complexes composed of single-stranded DNA plus gpI3L protein. These experiments detected two different DNA binding modes whose formation was dependent upon the protein density. The transition between the two binding modes occurred at a nucleotide to protein ratio of about 31 nucleotides per gpI3L monomer. S1 nuclease protection assay revealed that at saturating protein densities, each gpI3L monomer occludes 9.5 +/- 2.5 nucleotides. In the presence of magnesium, gpI3L promoted the formation of large DNA aggregates from which double-stranded DNA was excluded. Electron microscopy showed that, in the absence of magnesium and at low protein densities, gpI3L forms beaded structures on DNA. At high protein density the complexes display a smoother and less compacted morphology. In the presence of magnesium the complexes contained long fibrous and tangled arrays. These results suggest that gpI3L can form octameric complexes on DNA much like those formed by Escherichia coli single-stranded DNA protein. Moreover, the capacity to aggregate DNA may provide an environment in which hybrid DNA formation could occur during DNA replication. 相似文献
14.
Translation and processing of mouse hepatitis virus virion RNA in a cell-free system. 总被引:2,自引:11,他引:2 下载免费PDF全文
The first event after infection with mouse hepatitis virus strain A59 (MHV-A59) is presumed to be the synthesis of an RNA-dependent RNA polymerase from the input genomic RNA. The synthesis and processing of this putative polymerase protein was studied in a cell-free translation system utilizing 60S RNA from MHV-A59 virions. The polypeptide products of this reaction included two major species of 220 and 28 kilodaltons. Kinetics experiments indicated that both p220 and p28 appeared after 60 min of incubation and that protein p28 was synthesized initially as the N-terminal portion of a larger precursor protein. When the cell-free translation products were labeled with N-formyl[35S]methionyl-tRNAi, p28 was the predominant radioactive product, confirming its N-terminal location within a precursor protein. Translation in the presence of the protease inhibitors leupeptin and ZnCl2 resulted in the disappearance of p28 and p220 and the appearance of a new protein, p250. This product, which approached the maximal size predicted for a protein synthesized from genomic RNA, was not routinely detected in the absence of inhibitors even under conditions which optimized the translation reaction for elongation of proteins. Subsequent chelation of ZnCl2 resulted in the partial cleavage of the precursor protein and the reappearance of p28. One-dimensional peptide mapping with Staphylococcus aureus V-8 protease confirmed the precursor-product relationship of p250 and p28. The results show that MHV virion RNA, like many other viral RNAs, is translated into a large polyprotein, which is cleaved soon after synthesis into smaller, presumably functional proteins. This is in marked contrast to the synthesis of other MHV proteins, in which minimal proteolytic processing occurs. 相似文献
15.
16.
The vaccinia virus 14-kilodalton fusion protein forms a stable complex with the processed protein encoded by the vaccinia virus A17L gene. 总被引:1,自引:13,他引:1 下载免费PDF全文
The mechanism by which the 14-kDa fusion protein of vaccinia virus (VV) is anchored in the envelope of intracellular naked virions (INV) is not understood. In this investigation, we demonstrate that the 14-kDa protein interacts with another virus protein with an apparent molecular mass of 21 kDa. Microsequence analysis of the N terminus of the 21-kDa protein revealed that this protein is encoded by the VV A17L gene. The 21-kDa protein is processed from a 23-kDa precursor, by cleavage at amino acid position 16, at the consensus motif Ala-Gly-Ala, previously identified as a cleavage site for several VV structural proteins. The 21-kDa protein contains two large internal hydrophobic domains characteristic of membrane proteins. Pulse-chase analysis showed that within 1 h after synthesis, the 14-kDa protein forms a stable complex with the 21-kDa protein. Formation of the complex was not inhibited by rifampin, indicating that the interaction between these two proteins occurs prior to virion morphogenesis. Immunoprecipitation analysis of disrupted virions showed the presence of the 21-kDa protein in the viral particle. Release of the 14-kDa-21-kDa protein complex from INV required treatment with the nonionic detergent Nonidet P-40 and a reducing agent. The protein complex consisted of 14-kDa trimers and of 21-kDa dimers. Since the 14-kDa fusion protein lacks a signal sequence and a large hydrophobic domain characteristic of membrane proteins, our findings suggest that the 21-kDa protein serves to anchor the 14-kDa protein to the envelope of INV. 相似文献
17.
Identification of the Escherichia coli recN gene product as a major SOS protein. 总被引:3,自引:5,他引:3 下载免费PDF全文
The recA+ lexA+-dependent induction of four Escherichia coli SOS proteins was readily observed by two-dimensional gel analysis. In addition to the 38-kilodalton (kDa) RecA protein, which was induced in the greatest amounts and was readily identified, three other proteins of 115, 62, and 12 kDa were seen. The 115-kDa protein is the product of the uvrA gene, which is required for nucleotide excision repair and has previously been shown to be induced in the SOS response. The 62-kDa protein, which was induced to high intracellular levels, is the product of recN, a gene required for recBC-independent recombination. The recA and recN genes were partially derepressed in a recBC sbcB genetic background, a phenomenon which might account for the recombination proficiency of such strains. The 12-kDa protein has yet to be identified. 相似文献
18.
The E3L gene of vaccinia virus (VACV) encodes the E3 protein that in cultured cells inhibits the activation of interferon (IFN)-induced proteins, double-stranded RNA-dependent protein kinase (PKR), 2′-5′-oligoadenylate synthetase/RNase L (2-5A system) and adenosine deaminase (ADAR-1), thus helping the virus to evade host responses. Here, we have characterized the in vivo E3 functions in a murine inducible cell culture system (E3L-TetOFF) and in transgenic mice (TgE3L). Inducible E3 expression in cultured cells conferred on cells resistance to the antiviral action of IFN against different viruses, while expression of the E3L gene in TgE3L mice triggered enhanced sensitivity of the animals to pathogens. Virus infection monitored in TgE3L mice by different inoculation routes (intraperitoneal and tail scarification) showed that transgenic mice became more susceptible to VACV infection than control mice. TgE3L mice were also more susceptible to Leishmania major infection, leading to an increase in parasitemia compared to control mice. The enhanced sensitivity of TgE3L mice to VACV and L. major infections occurred together with alterations in the host immune system, as revealed by decreased T-cell responses to viral antigens in the spleen and lymph nodes and by differences in the levels of specific innate cell populations. These results demonstrate that expression of the E3L gene in transgenic mice partly reverses the resistance of the host to viral and parasitic infections and that these effects are associated with immune alterations. 相似文献
19.
IPTG-dependent vaccinia virus: identification of a virus protein enabling virion envelopment by Golgi membrane and egress. 总被引:23,自引:0,他引:23 下载免费PDF全文
A novel method has been developed to study the functional roles of individual vaccinia virus gene products that is neither limited by the possible essentiality of the target gene nor by the availability of conditional lethal mutants. The system utilises the E. coli lac repressor protein, the operator sequence to which it binds and the specific inducer IPTG. It allows the generation of recombinant viruses in which the expression of any chosen gene, and hence virus replication, can be externally controlled. In principle, this system is broadly applicable to the functional analysis of genes in any large DNA virus. This approach has demonstrated that the gene encoding the 14 kDa membrane protein of vaccinia virus is non-essential for the production of infectious intracellular virus particles, but essential for the envelopment of intracellular virions by Golgi membrane and for egress of mature extracellular viral particles. This is the first vaccinia virus protein shown to be specifically required for these processes. In vivo this system may prove useful as a means of attenuating recombinant vaccinia virus vaccines by preventing virus spread without reducing the amount of the foreign antigen expressed in each infected cell. Attenuation of other live virus vaccines may be developed in a similar way. 相似文献
20.