首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the specific activity of wild-type beta-galactosidase synthesized in a lacZ(-)/lacZ(+) heterogenote has shown that there is 60% more activity in the heterogenote's enzyme than can be accounted for by wild-type subunits alone. It is concluded that wild type beta-galactosidase subunits can complement mutant subunits.  相似文献   

2.
扬子鳄红细胞超氧物歧化酶的纯化及其性质研究周衍茂(安徽教育学院生物系,合肥230061)尹路明(中国科学技术大学生物系,合肥230026)关键词超氧物歧化酶;纯化;扬子鳄;红细胞超氧物歧化酶(的田广泛存在于各类生物组织中,是生物体内超氧自由基有效的清...  相似文献   

3.
Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis. The Escherichia coli biotin carboxylase is readily isolated from the other components of the acetyl-CoA carboxylase complex such that enzymatic activity is retained. The three-dimensional structure of biotin carboxylase, determined by x-ray crystallography, demonstrated that the enzyme is a homodimer consisting of two active sites in which each subunit contains a complete active site. To understand how each subunit contributes to the overall function of biotin carboxylase, we made hybrid molecules in which one subunit had a wild-type active site, and the other subunit contained an active site mutation known to significantly affect the activity of the enzyme. One of the two genes encoded a poly-histidine tag at its N terminus, whereas the other gene had an N-terminal FLAG epitope tag. The two genes were assembled into a mini-operon that was induced to give high level expression of both enzymes. "Hybrid" dimers composed of one subunit with a wild-type active site and a second subunit having a mutant active site were obtained by sequential chromatographic steps on columns of immobilized nickel chelate and anti-FLAG affinity matrices. In vitro kinetic studies of biotin carboxylase dimers in which both subunits were wild type revealed that the presence of the N-terminal tags did not alter the activity of the enzyme. However, kinetic assays of hybrid dimer biotin carboxylase molecules in which one subunit had an active site mutation (R292A, N290A, K238Q, or E288K) and the other subunit had a wild-type active site resulted in 39-, 28-, 94-, and 285-fold decreases in the activity of these enzymes, respectively. The dominant negative effects of these mutant subunits were also detected in vivo by monitoring the rate of fatty acid biosynthesis by [(14)C]acetate labeling of cellular lipids. Expression of the mutant biotin carboxylase genes from an inducible arabinose promoter resulted in a significantly reduced rate of fatty acid synthesis relative to the same strain that expressed the wild type gene. Thus, both the in vitro and in vivo data indicate that both subunits of biotin carboxylase are required for activity and that the two subunits must be in communication during enzyme function.  相似文献   

4.
A vector (pKL203) was constructed which contains the promoter-operator region of the lacZ gene and the major part of the coding sequence of the lac operon. The lacZ translation initiation signals [Shine-Dalgarno (SD) sequence and AUG codon] were deleted, and in their place a synthetic linker sequence was inserted, providing single restriction sites for SmaI and BamHI. With this vector constructions were made in which initiation signals of other prokaryotic genes (phage MS2 maturation protein, phage Q beta A2 gene and tufB gene) were fused to the lacZ gene, giving rise to various fusion proteins. The introduction of N-terminal amino acids (aa) in beta-galactosidase (beta-gal) which differ from the wild-type aa invariably leads to an enzyme with a strongly reduced thermostability as compared to the wild-type enzyme. Therefore an immunoprecipitation method was used to measure the amount of fusion protein. It was found that these amounts varied strongly from one construction to another. Concomitant determinations of the amounts of lac-operon-specific mRNA showed an unexpectedly large variation among the clones. No strict correlation could be found between the level of lac mRNA and beta-gal production. Per molecule of lac mRNA, translation appears to be most efficient when the homologous lacZ initiation signal is present.  相似文献   

5.
The mitochondrial NADH-ubiquinone reductase (complex I) is an assembly of approximately 26 different polypeptides. In vertebrates and invertebrates, seven of its subunits are the products of genes in the mitochondrial DNA, and homologues of these genes have been found previously in the chloroplast genomes of Marchantia polymorpha and Nicotiana tabacum, although their function in the chloroplast is unknown. The remainder of the subunits of the mitochondrial complex are nuclear gene products that are imported into the organelle, amongst them the 49 kd subunit, a component of the iron--sulphur subcomplex of the enzyme. In the present work, the N-terminal sequence of this protein has been determined, and this has been used to design two mixtures of synthetic oligonucleotides, each containing 32 different sequences 17 bases long. These mixtures have been used as hybridization probes to isolate cDNA clones from a bovine library. The DNA sequences of these clones have been determined and they encode the mature 49 kd protein, with the exception of amino acids 1 and 2. The protein sequence of 430 amino acids is closely related to those of proteins that are encoded in open reading frames (ORFs) present in the chloroplast genomes of M.polymorpha and N.tabacum. Only one cysteine is conserved and the sequences provide no indication that the 49 kd protein contains iron--sulphur centres. These ORFs are found in the single copy regions of chloroplast DNA in close proximity to four of the homologues of the mammalian mitochondrial genes that encode subunits of complex I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In the divE mutant, which has a temperature-sensitive mutation in the tRNA1(Ser) gene, the synthesis of beta-galactosidase is dramatically decreased at the non-permissive temperature. In Escherichia coli, the UCA codon is only recognized by tRNA1(Ser). Several genes containing UCA codons are normally expressed at 42 degrees C in the divE mutant. Therefore, it is unlikely that the defect is due to the general translational deficiency of the mutant tRNA1(Ser). In this study, we constructed mutant lacZ genes, in which one or several UCA codons at eight positions were replaced with other serine codons such as UCU or UCC, and we examined the expression of these mutant genes in the divE mutant. We found that a single UCA codon at position 6 or 462 was sufficient to cause the same level of reduced beta-galactosidase synthesis as that of the wild-type lacZ gene, and that the defect in beta-galactosidase synthesis was accompanied by a low level of lacZ mRNA. It was also found that introduction of an rne-1 pnp-7 double mutation restored the expression of mutant lacZ genes with only UCA codons at position 6 or 462. A polarity suppressor mutation in the rho gene had no effect on the defect in lacZ gene expression in the divE mutant. We propose a model to explain these results.  相似文献   

7.
W Ise  H Haiker    H Weiss 《The EMBO journal》1985,4(8):2075-2080
The rotenone sensitive NADH:ubiquinone was isolated from mitochondria of Neurospora crassa as a monodisperse preparation with the apparent mol. wt. in Triton solution of 0.9 X 10(6). The enzyme is composed of at least 22 subunits with apparent mol. wts. in SDS between 70 and 11 kd. Six of the subunits with the mol. wts. 70, 48, 37, 25, 22 and 18 kd were radioactively labelled in the enzyme isolated from cells which had incorporated [35S]methionine in the presence of cycloheximide. These subunits are synthesized in the mitochondria. Eleven subunits were radioactively labelled in the enzyme from cells which had incorporated [35S]methionine in the presence of chloramphenicol. These subunits are synthesized in the cytoplasm. The site of translation of the other subunits could not be established by the pulse-labelling technique. The assignment of the mitochondrially synthesized subunits to unidentified reading frames on the mitochondrial DNA is discussed.  相似文献   

8.
W J Ou  A Ito  H Okazaki    T Omura 《The EMBO journal》1989,8(9):2605-2612
A processing protease has been purified from the matrix fraction of rat liver mitochondria. The purified protease contained two protein subunits of 55 kd (P-55) and 52 kd (P-52) as determined by SDS-PAGE. The processing protease was estimated to be 105 kd in gel filtration, indicating that the two protein subunits form a heterodimeric complex. At high ionic conditions, the two subunits dissociated. The purified processing protease cleaved several mitochondrial protein precursors destined to different mitochondrial compartments, including adrenodoxin, malate dehydrogenase, P-450(SCC) and P-450(11 beta), but the processing efficiencies were different each other. The endoprotease nature of the processing protease was confirmed with the purified enzyme using adrenodoxin precursor as the substrate; both the mature form and the extension peptide were detected after the processing. The processing activity of the protease was inhibited by metal chelators, and reactivated by Mn2+, indicating that the protease is a metalloprotease.  相似文献   

9.
Vibrio and Aeromonas spp. secrete an unusual 35-kDa lipase that shares several properties with mammalian lecithin-cholesterol acyltransferase. The Aeromonas hydrophila lipase contains two cysteine residues that form an intramolecular disulfide bridge. Here we show that changing either of the cysteines to serine does not reduce enzymatic activity, indicating that the disulfide bond is not required for correct folding. However, when either of the cysteines is replaced, the enzyme is more readily denatured by urea and more sensitive to degradation by trypsin than is the wild-type enzyme, evidence that the bridge has an important role in stabilizing the protein's structure. The two mutant proteins with serine-for-cysteine replacements were secreted by Aeromonas salmonicida containing the cloned genes, although the levels of both in the culture supernatants were lower than the level of the wild-type enzyme. When the general secretory pathway was blocked with carbonyl cyanide chlorophenylhydrazone, the cell-associated pools of the mutant enzymes appeared to be degraded, whereas the wild-type pool remained stable. We conclude that reduced extracellular levels of the mutant proteins are the result of their increased sensitivities to proteases encountered inside the cell during export.  相似文献   

10.
The RecD subunit of the RecBCD enzyme from Escherichia coli contains an amino acid sequence common to many enzymes which bind ATP or GTP (Gly-X-X-Gly-X-Gly-Lys-Thr). We have changed the conserved lysine residue (amino acid number 177) in the RecD protein to glutamine to investigate the role of RecD, and ATP-binding to RecD, in the enzymatic activities of RecBCD. The mutant RecD protein assembles with the RecB and RecC subunits and the mutant enzyme, designated RecBCD-K177Q, can be purified in the same way as the wild-type RecBCD enzyme. The mutant RecD subunit in RecBCD-K177Q is photolabeled to a lesser extent by the ATP analogue 8-azido-adenosine-5'-triphosphate than is the wild-type RecD subunit in RecBCD, suggesting that the mutation has reduced the affinity of RecD for ATP.  相似文献   

11.
The site of integration of phage Mu d (Ap lac) in mutant M9s which leads to deficiency of formic dehydrogenase (benzylviologen-linked) activity was determined. It was shown that the phage had inserted into the gene for the seleno-polypeptide of the enzyme (80 kd) leading to the formation of a truncated peptide (60 kd) still able to incorporate Se. Synthesis of the truncated polypeptide is subject to the same regulatory signals as that of the wild-type enzyme. The formation of the 110 kd seleno-polypeptide, which is a constituent component of the formic dehydrogenase from the formate-nitrate respiratory pathway, is unimpaired in mutant M9s. The location of the gene for the 80 kd seleno-polypeptide was mapped at 92.4 min of the Escherichia coli chromosome.Abbreviation PMSF phenylmethylsulfonyl fluoride Dedicated to Professor G. Drews on the occasion of his 60 th birthday  相似文献   

12.
Bordetella pertussis produces a calmodulin-sensitive adenylate cyclase (AC) which is an essential virulence factor in mammalian pertussis. Here we report the purification and characterization of the toxic form of the enzyme, which penetrates eukaryotic cells and generates high levels of intracellular cAMP. This form was purified from an extract of B.pertussis strain carrying a recombinant plasmid which over-produced both enzymatic and toxic activities of the enzyme. Western blot analysis of the extract using anti-B.pertussis AC antibodies detected only one protein of 200 kd. However, gel filtration of the extract resolved two peaks of enzymatic activity. The first peak of aggregated material contained greater than 70% of the total enzymatic activity, and the second peak contained the majority of the toxic activity. Purification of the enzyme from both peaks yielded proteins of 200 kd, with similar biochemical and immunological properties. Yet only the enzyme purified from the second peak could penetrate human lymphocyte and catalyse the formation of intracellular cAMP. B.pertussis AC gene expressed in Escherichia coli produced a calmodulin-dependent enzyme of 200 kd, which lacked lymphocyte penetration capacity. It is proposed that a post-translational modification that occurs in B.pertussis but not in E.coli confers upon the 200 kd protein of B.pertussis AC the toxic properties.  相似文献   

13.
Summary Variation in the arachin polypeptides of groundnut genotypes was observed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Three regions could be observed on the electropherogram. Region 1, corresponding to conarachin, did not show any variation; region 2, consisting of arachin acidic subunits, showed variation; region 3, containing the arachin basic subunits, did not show any variation. There are four varietal classes of arachin polypeptide patterns: class A comprised three acidic subunits of arachin of molecular weights 47.5, 45.1 and 42.6 kd and a basic subunit of 21.4 kd; class B, with three acidic subunits of molecular weights 47.5, 45.1 and 41.2 kd and a basic subunit of 21.4 kd; class C of an additive pattern of class A and class B; class D, of two acidic polypeptides of 47.5, 45.1 kd and the basic 21.4 kd subunit. Of the 90 genotypes studied, 73% belong to class A, 15% to class B and 6% each to class C and D. Analysis of F2 seeds from a cross between class A and class B genotypes showed that the two polypeptides (42.6 kd and 41.2 kd) are coded by nonallelic genes and also revealed that class C and class D patterns arose as a result of hybridisation between class A and class B. A. monticola, the progenitor of A. hypogaea, showed a pattern similar to the additive pattern of class A and class B while some diploid Arachis species had the 41.2 kd polypeptide. Based on arachin polypeptide patterns the probable origin of A. hypogaea has been suggested.  相似文献   

14.
The phenylalanyl-transfer ribonucleic acid synthetase of Escherichia coli is a tetramer that contains two different kinds of polypeptide chains. To locate the genes for the two polypeptides, we analyzed temperature-sensitive mutants with defective phenylalanyl-transfer ribonucleic acid synthetases to see which subunit was altered. The method was in vitro complementation; mutant cell extracts were mixed with purified separated alpha or beta subunits of the wild-type enzyme to generate an active hybrid enzyme. With three mutants, enzyme activity appeared when alpha was added, but not when beta was added: these are, therefore, assumed to carry lesions in the gene for the alpha subunit. Two other mutants gave the opposite response and are presumably beta mutants. Enzyme activity is also generated when alpha and beta mutant extracts are mixed, but not when two alpha or two beta mutant extracts are mixed. The inactive mutant enzymes appear to be dissociated, as judged by their sedimentation in sucrose density gradients, but the dissociation may be only partial. The active enzyme generated by complementation occurred in two forms, one that resembled the native wild-type enzyme and one that sedimented more slowly. Both alpha and beta mutants are capable of generating the native form, although alpha mutants require prior urea denaturation of the defective enzyme. With the mutants thus characterized, the genes for the alpha and beta subunits (designated pheS and heT, respectively) were mapped. The gene order, as determined by transduction is aroD-pps-pheT-pheS. The pheS and pheT genes are close together and may be immediately adjacent.  相似文献   

15.
A hybrid version of Escherichia coli aspartate transcarbamoylase was investigated in which one catalytic subunit has the wild-type sequence, and the other catalytic subunit has Glu-239 replaced by Gln. Since Glu-239 is involved in intersubunit interactions, this hybrid could be used to evaluate the extent to which T state stabilization is required for homotropic cooperativity and for heterotropic effects. Reconstitution of the hybrid holoenzyme (two different catalytic subunits with three wild-type regulatory subunits) was followed by separation of the mixture by anion-exchange chromatography. To make possible the resolution of the three holoenzyme species formed by the reconstitution, the charge of one of the catalytic subunits was altered by the addition of six aspartic acid residues to the C terminus of each of the catalytic chains (AT-C catalytic subunit). Control experiments indicated that the AT-C catalytic subunit as well as the holoenzyme formed with AT-C and wild-type regulatory subunits had essentially the same homotropic and heterotropic properties as the native catalytic subunit and holoenzyme, indicating that the addition of the aspartate tail did not influence the function of either enzyme. The control reconstituted holoenzyme, in which both catalytic subunits have Glu-239 replaced by Gln, exhibited no cooperativity, an enhanced affinity for aspartate, and essentially no heterotropic response identical to the enzyme isolated without reconstitution. The hybrid containing one normal and one mutant catalytic subunit exhibited homotropic cooperativity with a Hill coefficient of 1.4 and responded to the nucleotide effectors at about 50% of the level of the wild-type enzyme. Small angle x-ray scattering experiments with the hybrid enzyme indicated that in the absence of ligands it was structurally similar, but not identical, to the T state of the wild-type enzyme. In contrast to the wild-type enzyme, addition of carbamoyl phosphate induced a significant alteration in the scattering pattern, whereas the bisubstrate analog N-phosphonoacetyl-L-aspartate induced a significant change in the scattering pattern indicating the transition to the R-structural state. These data indicate that in the hybrid enzyme only three of the usual six interchain interactions involving Glu-239 are sufficient to stabilize the enzyme in a low affinity, low activity state and allow an allosteric transition to occur.  相似文献   

16.
The only inhibitor of human salivary α-amylase identified so far in Hordeum has been isolated from barley cv. Bomi endosperm. This protein has the same N-terminal sequence (23 residues), molecular mass, and isoelectric point as one of the subunits of the barley tetrameric inhibitor previously characterized. However, enzymatic cleavage of both proteins with endoproteinase Glu-C revealed that they are products of different genes. The two isoforms have diverged in their aggregative and inhibitory properties. Thus, the subunit previously characterized forms, along with two other subunits, a tetramer active towards insect but not human salivary α-amylase, while the isoform reported here behaves as a homodimer effective against the human enzyme. These results are discussed in the context of the evolution of the cereal α-amylase inhibitor family.  相似文献   

17.
The only inhibitor of human salivary α-amylase identified so far in Hordeum has been isolated from barley cv. Bomi endosperm. This protein has the same N-terminal sequence (23 residues), molecular mass, and isoelectric point as one of the subunits of the barley tetrameric inhibitor previously characterized. However, enzymatic cleavage of both proteins with endoproteinase Glu-C revealed that they are products of different genes. The two isoforms have diverged in their aggregative and inhibitory properties. Thus, the subunit previously characterized forms, along with two other subunits, a tetramer active towards insect but not human salivary α-amylase, while the isoform reported here behaves as a homodimer effective against the human enzyme. These results are discussed in the context of the evolution of the cereal α-amylase inhibitor family.  相似文献   

18.
The specific enzymatic activity of renal gamma-glutamyltranspeptidase is decreased from control levels (0.86 unit-1 mg-1) to minimal values within 2 h postinjection of 100-g rats with acivicin, an irreversible inhibitor of the enzyme. The recovery of transpeptidase specific activity was followed from 2 to 24 h postinjection and the data were used to calculate the absolute rate constants for degradation (kd = 0.47 +/- 0.03 day-1) and synthesis (ks = 0.41 +/- 0.04 unit-1 mg-1 day-1). This corresponds to a half-life for the renal transpeptidase of 1.46 +/- 0.09 days and 99% recovery of the specific activity by 10 days postinjection. Recovery was followed for 14 days and closely approximates this theoretical curve. The data from control experiments designed to test for secondary effects of the drug, acivicin, show that neither the relative rate of synthesis nor apparent rate of degradation for either total protein or gamma-glutamyltranspeptidase is significantly altered by acivicin treatment of rats. The results also show that the acivicin-inhibited transpeptidase is not degraded differently than enzymatically active enzyme. The individual heterodimer subunits also exhibit similar apparent half-lives in both control and treated animals. Thus, recovery of renal gamma-glutamyltranspeptidase specific activity after acivicin treatment can be used in vivo to determine absolute values of ks and kd for this enzyme. These values have not been reported for any other constituent of the renal brush-border membrane.  相似文献   

19.
20.
Two-dimensional tryptic mapping of 125I-labeled polypeptides has been employed to compare the large subunits of type II DNA-dependent RNA polymerases from maize, parsley (Petroselinum sativum), and wheat. Maps of the 220 kilodalton (kd) and 140 kd subunits from wheat RNA polymerase II differ from those of the corresponding subunits from parsley enzyme II. The 180 kd subunits from maize and parsley type II enzymes also yield dissimilar tryptic maps. Thus, despite similarities in molecular mass, the large subunits of wheat, parsley, and maize type II RNA polymerases are unique to each individual plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号