首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Alkaline phosphatase of Escherichia coli undergoes below pH 6·0 a reversible acid inactivation that has been studied and related to the extent of uptake of inorganic phosphate occurring below pH 6·0. 2. The rate of inactivation is rapid in the first few minutes but later it decreases markedly. Temperature, pH, composition of buffer and other factors have an important effect on the inactivation. 3. About 60% of the activity lost at pH values above 3·5 is rapidly recovered when the enzyme is taken back to pH 8·0, independently (within certain limits) of the extent of the inactivation. 4. Phosphate and Zn2+, although very good protectors of the inactivation by acid, are not by themselves able to reverse the acid inactivation. 5. Inorganic phosphate seems not to be incorporated into the acid-inactivated enzyme. 6. Incorporation of more than one mole of phosphate/mole of enzyme has been obtained, but the phosphate residues seem to be incorporated to serine residues with a common sequence, suggesting two identical active serine residues/molecule of active enzyme.  相似文献   

2.
We report a quantitative assay of 5-fluorouracil (FU) and its metabolite, 5-fluorodihydrouracil (FDHU) in human urine by used a column-switching high-performance liquid chromatographic method. The analyses were carried out using a molecular exclusion column for sample purification, and a cation-exchange column for separation. Each sample required only 40 min to analyze, and required no preparation other than filtration. Linearity was verified up to 1000 nmol/ml (r>0.993). The recovery of FU was 96–101%; recovery of FDHU was 96–105%. The imprecision (RSD) for FU (10–100 nmol/ml) was <1.5%, same-day (n=5), and <1.8%, day-to-day (n=5). The imprecision (RSD) for FDHU (10–100 nmol/ml) was <3.2%, same-day (n=5), and <4.0%, day-to-day (n=5). The detection limits were, respectively, 0.1 nmol/ml. We measured FU and FDHU in urine of seven cancer patients after oral administration of FU. The cumulative quantity ratio of the FDHU and FU (FDHU/FU) excreted in their urine within 120 min after FU administration was a constant value in all seven patients. Based on these results, we believe that our method provides a useful tool for evaluating FU metabolism.  相似文献   

3.
When synaptic plasma membrane fragments are incubated with ATP in the presence of Mg2+, phosphate is transferred, not only to protein-bound serine, but also to protein-bound histidine. The phosphorylation of protein-bound serine is stimulated by cyclic AMP and has a Km for ATP of about 0.12 mM, both in the presence and absence of cyclic AMP. By contrast, the phosphorylation of protein-bound histidine is unaffected by cyclic AMP and does not follow Michaelis-Menton kinetics since a non-linear double reciprocal plot is given when activity is measured at various ATP concentrations.  相似文献   

4.
Previous studies have demonstrated that the vitamin pyridoxal phosphate can alter the physicochemical properties of glucocorticoid receptors. We now report the localization of a pyridoxal phosphate binding site within the mero-receptor domain of this glucocorticoid receptor. Mero-glucocorticoid receptors that are generated by trypsin (10 μg/ml) or chymotrypsin (100 μg/ml) digestion of intact receptors sediment as 2.6 S species on 5–20% sucrose gradients in the presence or absence of pyridoxal phosphate. Mero-glucocoritcoid receptors prepared by exogenous proteinases are hydrophobic and show no affinity for DEAE Bio-Gel A. Treating either trypsin-generated or chymotrypsin-generated mero-receptors with pyridoxal phosphate rapidly converts the proteins (60 and 35%, respectively) into forms that bind to DEAE Bio-Gel A. Induction of DEAE binding is specific to pyridoxal phosphate, for treating mero-receptors with pyridoxal, pyridoxamine or pyridoxine phosphate is ineffective. Furthermore, DEAE binding cannot be induced by adding other pyridoxal phosphate-treated cytosols to untreated mero-receptors. High-resolution polyacrylamide gel isoelectric focussing studies indicated that treating mero-receptor generated by either proteinase with pyridoxal phosphate shifted the isoelectric points of lower pH values. The conversion of the mero-receptor to a more acidic form also occurred when the intact glucocorticoid receptor was treated with the vitamin prior to proteolysis. These studies localize at least one pyridoxal phosphate binding site on the mero-receptor domain of the rat thymocyte glucocorticoid receptor.  相似文献   

5.
1. Ca2+ transport by mitochondria isolated from flight muscle of the sheep blowfly Lucilla cuprina does not occur in the absence of added P1. Maximum rates of transport are attained when about 2.5 mM-phosphate is present. 2. As mitochondria develop, high but not low phosphate concentrations begin to inhibit Ca2+ transport markedly; those isolated from 2-day-old flies for example, are inhibited by about 75% by 20 mM-phosphate. Maximum rates of transport, i.e. those measured in the presence of 2.5 mM-phosphate, begin to decline only when the fly is about 3 days old. 3. Mitochondrial phosphate transport activity does not change during development of the blowfly, but the endogenous concentration of the anion does. At emergence it is about 6nmol/mg of protein, increases to about 17 nmol/mg of protein at 2-3h and then rapidly declines to reach less than 5 nmol/mg of protein after 2 days of adult life. 4. Studies on the effect of phosphate on oxidation of alpha-glycerophosphate in the absence and presence of ADP reveal a lack of inhibition by high phosphate concentrations indicating that the anion does not influence Ca2+ transport by preventing the generation of the proton electrochemical gradient across the inner membrane. 5. It is concluded that the molecular assembly in the inner membrane of Lucilla mitochondria responsible for transporting Ca2+ is fully developed at emergence and remains so for at least 2-3 days of adult life. The possibility exists that Ca2+-transport activity in these mitochondria is controlled at least in part by P1.  相似文献   

6.
When synaptic plasma membrane fragments are incubated with ATP in the presence of Mg2+, phosphate is transferred, not only to protein-bound serine, but also to protein-bound histidine. The phosphorylation of protein-bound serine is stimulated by cyclic AMP and has a Km for ATP of about 0.12 mM, both in the presence and absence of cyclic AMP. By contrast, the phosphorylation of protein-bound histidine is unaffected by cyclic AMP and does not follow Michaelis-Menton kinetics since a non-linear double reciprocal plot is given when activity is measured at various ATP concentrations.  相似文献   

7.
An amperometric assay for the determination of inorganic phosphate (Pi) in urine has been developed without the need for sample preparation. A screen-printed carbon electrode modified with the electrocatalyst cobalt phthalocyanine (CoPC–SPCE) and covered with a cellulose acetate membrane (CAM) serves as the sensor. The sensor detects hydrogen peroxide (H2O2), which is produced as a result of the oxidative decarboxylation of pyruvate, catalyzed by pyruvate oxidase (PyOd), in the presence of Pi, oxygen, and cofactors. Following optimization of solution conditions, and in the presence of a urine sample, a linear range was found to exist between the rate of current increase and phosphate concentration over the range of 2.27 × 10−5 to 1.81 × 10−4 M, and the limit of detection was found to be 4.27 × 10−6 M. The assay was applied to the determination of phosphate ions in the urine of a normal subject, and the mean concentration in unspiked urine was found to be 3.40 × 10−5 M with a coefficient of variation of 8.0% (n = 5). The mean recovery of phosphate added to urine samples was 98.7% with a coefficient of variation of 5.5% (n = 3). To the authors’ knowledge, this is the first report of an amperometric assay for Pi that incorporates a CoPC–SPCE as the sensing device.  相似文献   

8.
Summary Magnitude and characteristics of phosphate transfer through the erythrocyte membranes of ten mammalian species were measured using tracer exchange techniques. Remarkable quantitative species differences could be demonstrated, permeabilities (at an extracellular phosphate concentration of 10mM) increasing from 0.2×10–8 cm/sec (sheep) to 2.2×10–8 cm/sec (rabbit) in the sequence sheep 相似文献   

9.
The cellular contents of protein-bound and nonprotein sulfhydry (—SH) and disulfide (—SS—) groups were measured in both asynchronous and synchronous HeLa S3 cultures. About 90% of these groups are associated with proteins, the majority in the —SH form. The content of protein-bound groups, and hence the total content of —SH and —SS— groups (28 × 10-15 moles/cell, or 1.1 × 10-6 moles/g protein on average), changes in parallel with the protein content (which varies between 2 and 4 × 10-10 g/cell) as asynchronous populations pass from the lag through the exponential to the stationary phase of growth. The concentration of nonprotein —SH groups, in contrast, increases 10-fold during lag phase and decreases in stationary phase; it follows the protein concentration closely during the exponential phase, at a level of about 2.8 × 10-15 moles/cell. In synchronous cultures the protein content doubles during the cell cycle, possibly in an exponential fashion. The total —SH and —SS— content also doubles, but the rate of increase appears to fluctuate. The concentrations of the protein-bound groups show 2- to 3-fold fluctuations per unit protein: protein-bound —SH groups and mixed —SS— linkages rise to maxima while protein-bound —SS— groups fall to a minimum at the G1/S transition, and fluctuations in these groups occur again during G2. In addition, the protein-bound —SH concentration falls continuously during the S phase. The nonprotein —SH concentration undergoes the largest (relative) fluctuations, dropping from 4 × 10-15moles/cell in early G1 to about 0.4 × 10-15 moles/cell (of standard protein content) at the end of G1, and then rising to 30 times this value by the end of S.  相似文献   

10.
Bioanalytical methods for the determination of estramustine phosphate by liquid chromatography and its four main metabolites estromustine, estramustine, estrone and estradiol by gas chromatography are described. For the estramustine phosphate assay the plasma was purified by protein precipitation followed by a C18 solid-phase extraction. For the metabolite assay the plasma samples were purified by a C18 solid-phase and liquid–liquid extraction procedure and derivatised by silanization. Thereafter, estramustine and estromustine were quantified by gas chromatography with nitrogen-phosphorus detection and estradiol and estrone were quantified by gas chromatography with selected ion monitoring. The methods were validated with respect to linearity, selectivity, precision, accuracy, limit of quantitation, limit of detection, recovery and stability. The limit of quantitation was 2.3 μmol/l for estramustine phosphate, 30 nmol/l for estromustine and estramustine, 12 nmol/l for estrone and 8 nmol/l for estradiol. The results showed good precision and accuracy for estramustine phosphate and the four metabolites. The intermediate precision was 6.2–13.5% (C.V.) and the accuracy was 91.8–103.9%.  相似文献   

11.
A new ion-pair high-performance liquid chromatographic method with column-switching has been developed for the determination of paraquat in human serum samples. The diluted serum sample was injected onto a precolumn packed with LiChroprep RP-8 (25-40 μm) and polar serum components were washed out by 3% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 5 mM sodium octanesulfonate. After valve switching to inject position, concentrated compounds were eluted in the back-flush mode and separated on an Inertsil ODS-2 column with 17% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 10 mM sodium octanesulfonate. The total analysis time per sample was about 30 min and mean recovery was 98.5±2.8% with a linear range of 0.1–100 μg/ml. This method has been successfully applied to serum samples from incidents by paraquat poisoning.  相似文献   

12.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

13.
An extractor has been developed for microporous membrane liquid–liquid extraction (MMLLE) of lipophilic xenobiotics at trace levels in biological fluids. This new construction allows the sample phase to be stirred, while the organic phase is pumped. The extractor was evaluated using human blood plasma with added organophosphate esters. The size exclusion properties of the membrane reduced lipid co-extraction by 94% compared to ordinary liquid–liquid extraction. In combination with a solid-phase extraction (SPE) step, the method was shown to remove plasma lipids efficiently and thus allow gas chromatographic separation of the compounds. The clean-up method described, including the SPE step, showed a high level of reproducibility, and recoveries of between 72 and 83% were obtained for five of the organophosphate esters after a 200-min extraction period. Using this technique, triphenyl phosphate and an isomer of octyl diphenyl phosphate were detected in human plasma obtained from blood donors. The concentration of triphenyl phosphate ranged between 0.13 and 0.15 μg/g plasma.  相似文献   

14.
Resting cells of Staphylococcus aureus displayed a phosphate (Pi) exchange that was induced by growth with glucose 6-phosphate (G6P) or sn-glycerol 3-phosphate (G3P). Pi-loaded membrane vesicles from these cells accumulated 32Pi, 2-deoxyglucose 6-phosphate (2DG6P) or G3P by an electroneutral exchange that required no external source of energy. On the other hand, when vesicles were loaded with morpholinopropane sulfonic acid (MOPS), only transport of 32Pi (and L-histidine) was observed, and in that case transport depended on addition of an oxidizable substrate (DL-lactate). In such MOPS-loaded vesicles, accumulation of the organic phosphates, 2DG6P and G3P, could not be observed until vesicles were preincubated with both Pi and DL-lactate to establish an internal pool of Pi. This trans effect demonstrates that movement of 2DG6P or G3P is based on an antiport (exchange) with internal Pi. Reconstitution of membrane protein allowed a quantitative analysis of Pi-linked exchange. Pi-loaded proteoliposomes and membrane vesicles had comparable activities for the homologous 32Pi: Pi exchange (Kt's of 2.2 and 1.4 mM; Vmax's of 180 and 83 nmol Pi/min per mg protein), indicating that the exchange reaction was recovered intact in the artificial system. Other work showed that heterologous exchange from either G6P- or G3P-grown cells had a preference for 2DG6P (Kt = 27 microM) over G3P (Kt = 1.3 mM) and Pi (Kt = 2.2 mM), suggesting that the same antiporter was induced in both cases. We conclude that 32Pi: Pi exchange exhibited by resting cells reflects operation of an antiporter with high specificity for sugar 6-phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A method for determination of carnitine, 4-(N,N,N-trimethylammonio)butanoate (butyrobetaine), and 2-(N,N,N-trimethylammonio)acetate (betaine) is described. These ω-trimethylammonio carboxylates and the chemically analogous internal standards 4-(N,N-dimethyl-N-propylammonio)-3-hydroxybutanoate or 5-(N,N,N-trimethylammonio)hexanoate were derivatized by reaction wiht 4′-bromophenacyl triflate in the presence of N,N-diisopropylethylamine. The trialkylammonio carboxylate 4′-bromophenacyl ester derivatives were separated from other sample constituents by reversed-phase ion-pair high-performance liquid chromatography with spectrophotometric detection at 254 nm. Standard curves were linear over a sample concentration range of 10–100 nmol/ml. Quantities of 2.5 nmol of ω-trialkylammonio acid derivatives injected into the chromatography were detected with signal-to-noise ratios greater than 50.  相似文献   

16.
We present evidence that cysteine 269 of the small subunit of Escherichia coli carbamyl phosphate synthetase is essential for the hydrolysis of glutamine. When cysteine 269 is replaced with glycine or with serine by site-directed mutagenesis of the carA gene, the resulting enzymes are unable to catalyze carbamyl phosphate synthesis with glutamine as nitrogen donor. Even though the glycine 269, and particularly the serine 269 enzyme bind significant amounts of glutamine, neither glycine 269 nor serine 269 can hydrolyze glutamine. The mutations at cysteine 269 do not affect carbamyl phosphate synthesis with NH3 as substrate. The NH3-dependent activity of the mutant enzymes was equal to that of wild-type. Measurements of Km indicate that the enzyme uses unionized NH3 rather than ammonium ion as substrate. The apparent Km for NH3 of the wild-type enzyme is calculated to be about 5 mM, independent of pH. The substitution of cysteine 269 with glycine or with serine results in a decrease of the apparent Km value for NH3 from 5 mM with the wild-type to 3.9 mM with the glycine, and 2.9 mM with the serine enzyme. Neither the glycine nor the serine mutation at position 269 affects the ability of the enzyme to catalyze ATP synthesis from ADP and carbamyl phosphate. Allosteric properties of the large subunit are also unaffected. However, substitution of cysteine 269 with glycine or with serine causes an 8- and 18-fold stimulation of HCO-3 -dependent ATPase activity, respectively. The increase in ATPase activity and the decrease in apparent Km for NH3 provide additional evidence for an interaction of the glutamine binding domain of the small subunit with one of the two known ATP sites of the large subunit.  相似文献   

17.
Germlings of Phytophthora palmivora possess at least two systems for the uptake of inorganic phosphate (Pi). The first is synthesized on germination in medium containing 50 M Pi and has a Km of approx. 30 M (Vmax=7–9 nmol Pi/h·106 cells). The second is synthesized under conditions of Pi-deprivation and has a higher affinity for Pi (Km=1–2 M), but a lower Vmax (0.5–2 nmol Pi/h·106 cells). The fungicide phosphite likewise enters the germlings via two different transport systems, the synthesis of which also depends on the concentration of Pi in the medium. The Km of the lower affinity system is 3 mM (Vmax=20 nmol phosphite/h·106 cells) and that of the higher affinity system is 0.6 mM (Vmax=12 nmol/h·106 cells). Pi and phosphite are competitive inhibitors for each other's transport in both systems. However, whereas mM concentrations of phosphite are necessary to inhibit Pi transport, only M concentrations of Pi are required to inhibit phosphite transport. A third system of uptake for Pi also exists, since when phosphate-deprived cells are presented with mM concentrations of Pi, they transport the anion at a very high rate (around 100 nmol/h·106 cells). High rates of transport of phosphite are also observed when these cells are presented with mM concentrations of this anion.  相似文献   

18.
A diagonal-electrophoresis method for the selective purification of serine phosphate peptides was applied to tryptic, chymotryptic and peptic digests of oxidized ovalbumin. This method is based on the release of the phosphate group bound to serine by treatment with alkaline phosphatase on paper. The identified serine phosphate peptides were purified by paper electrophoresis at pH6.5 and 2.0, dephosphorylation with bacterial alkaline phosphatase, and paper electrophoresis at pH2.0 again, in that order. The presence of two groups of serine phosphate peptides was apparent from the amino acid composition. One group contained no lysine, cysteic acid, proline, leucine or isoleucine (sequence 1) and the other had all those amino acids (sequence 2). Further degradation with subtilisin of those peptides and ;dansyl'-Edman sequence analysis established their partial sequences. The proposed sequences are as follows (with ;SerP' representing serine phosphate): sequence 1, -Ala-Gly-Arg-Glu-Val-Val-Gly-SerP-Ala-Glu-Ala-Gly-Asp-Val-Ala-Ala-Ser-(Val,Glx(2),Ser,Phe)-Arg-; sequence 2, -Asp-Lys-Leu-Pro-Gly-Phe-Gly-Asp-SerP-Ile-Glx-Ala-Glx-CySO(3)H-Gly-(Thr,Ser,Val)-(Asp,His,Val)-. The partial sequence of one of the phosphopeptides, Asp-(Glu,Ile,SerP), reported by Flavin (1954) was used to establish the proposed sequence 2.  相似文献   

19.
1. The molecular weights of the subunits of purified pig heart pyruvate dehydrogenase complex were determined by sodium dodecyl sulphate/polyacrylamide-disc-gel electrophoresis and were: pyruvate decarboxylase, α-subunit 40600, β-subunit 35100; dihydrolipoyl acetyltransferase 76100; dihydrolipoyl dehydrogenase 58200. 2. Inactivation of the pyruvate dehydrogenase complex by its integral kinase corresponded to the incorporation of 0.46nmol of P/unit of complex activity inactivated. 3. Further incorporation of phosphate into the complex occurred to a limit of 1.27nmol of P/unit of complex inactivated (approx. 3 times that required for inactivation). 4. Phosphate was incorporated only into the α-subunit of the decarboxylase. 5. The molar ratio of phosphate to α-subunits of the decarboxylase was estimated by radioamidination of amino groups of pyruvate dehydrogenase [32P]phosphate complex by using methyl [1-14C]acetimidate, followed by separation of α-subunits by sodium dodecyl sulphate/polyacrylamide-disc-gel electrophoresis. Inactivation of the complex (0.46nmol of P/unit of complex inactivated) corresponded to a molar ratio of one phosphate group per two α-chains (i.e. one phosphate group/α2β2 tetramer). Complete phosphorylation corresponded to three phosphate groups per α2β2 tetramer. 6. Subunit molar ratios in the complex were also estimated by the radioamidination technique. Results corresponded most closely to molar ratios of 4 α-subunits:4 β-subunits:2 dihydrolipoyl acetyltransferase subunits:1 dihydrolipoyl dehydrogenase subunit.  相似文献   

20.
Van Donk  E.  Mur  L. R.  Ringelberg  J. 《Hydrobiologia》1989,188(1):201-209
In order to assess possible phosphate limitation for the phytoplankton community of Lake Maarsseveen, two techniques (phosphate uptake experiments and bioassays) were employed simultaneously in February–March 1982. In that period the ambient phosphate concentration of the lake water was less than 0.03 µM P and the diatom Asterionella formosa constituted more than 90% of the phytoplankton population. The phosphate uptake experiments showed relatively high uptake capacities and low cell phosphorus contents for the natural phytoplankton community. This suggested phosphate limitation throughout the test period. The growth stimulation of the phytoplankton after enrichment with phosphate, however, only revealed phosphate limitation from the beginning of March and bioassays may therefore be regarded as a less sensitive method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号