共查询到20条相似文献,搜索用时 0 毫秒
1.
D. M. Terrian P. G. Hernandez M. A. Rea R. I. Peters 《Journal of neurochemistry》1989,53(5):1390-1399
Using a hippocampal subcellular fraction enriched in mossy fiber synaptosomes, evidence was obtained indicating that adenosine derived from a presynaptic pool of ATP may modulate the release of prodynorphin-derived peptides. and glutamic acid from mossy fiber terminals. Synaptosomal ATP was released in a Ca2+-dependent manner by K+-induced depolarization. The rapid hydrolysis of extracellular [14C]ATP in the presence of intact mossy fiber synaptosomes resulted in the production of [14C]adenosine. Micromolar concentrations of a stable adenosine analogue, 2-chloroadenosine, inhibited the K+-stimulated release of both dynorphin B and dynorphin A(1-8). 2-Chloroadenosine failed to suppress the evoked release of glutamic acid, measured in these same superfusates, unless the mossy fiber synaptosomes were pretreated with D-aspartic acid to deplete the cytosolic, Ca2+-independent, pool of this acidic amino acid. In synaptosomes pretreated in this manner, release of the remaining Ca2+-dependent pool of glutamic acid was significantly inhibited by NiCl2, 2-chloroadenosine, 5'-N-ethylcarboxamidoadenosine, cyclohexyladenosine, and R(-)-N6(2-phenylisopropyl)adenosine, but not by ATP. 2-Chloroadenosine-induced inhibition was reversed when the external CaCl2 concentration was raised from 1.8 mM to 6 mM. 8-Phenyltheophylline, an adenosine receptor antagonist, effectively blocked the inhibitory effects of 2-chloroadenosine on mossy fiber synaptosomes and significantly enhanced the K+-evoked release of both glutamic acid and dynorphin A(1-8) when added alone to the superfusion medium. These results support the proposition that depolarized hippocampal mossy fiber synaptosomes release endogenous ATP and are capable of forming adenosine from extracellular ATP, and that endogenous adenosine may act at a presynaptic site to inhibit the further release of glutamic acid and the prodynorphin-derived peptides. 相似文献
2.
E. J. Freeman D. S. Damron D. M. Terrian R. V. Dorman 《Journal of neurochemistry》1991,56(3):1079-1082
Presynaptic correlates of evoked neurotransmitter release include a rise in cytosolic free calcium level and the calcium-dependent liberation of unesterified arachidonic acid. It has been proposed that lipoxygenase metabolites produced from arachidonic acid may constitute an endogenous feedback system for the modulation of neurotransmitter release. The results of the present study are in agreement with this hypothesis. It was demonstrated that membrane depolarization evoked the release of endogenous glutamate from hippocampal mossy fiber synaptosomes, as well as the accumulation of intraterminal free calcium. The presence of 12-lipoxygenase products attenuated both the induced release of glutamate and the increase in calcium content, whereas 5- or 15-lipoxygenase metabolites were ineffective. A role for lipoxygenase products in the negative modulation of mossy fiber secretion processes was further indicated by the observations that low concentrations of the lipoxygenase inhibitor nordihydroguaiaretic acid (0.1-10 microM) potentiated the glutamate release and calcium accumulation induced by membrane depolarization. Therefore, we suggest that 12-lipoxygenase metabolites provide a presynaptic inhibitory signal that limits neurotransmitter release from hippocampal mossy fiber terminals. 相似文献
3.
Philippe Taupin Sylvie Zini François Cesselin Yezekiel Ben-Ari Marie-Paule Roisin 《Journal of neurochemistry》1994,62(4):1586-1595
Abstract: A method for preparation of hippocampal mossy fiber synaptosomes directly from the postnuclear pellet is presented. This method represents an adaption of that previously described for the isolation of synaptosomes by centrifugation through Percoll gradients directly from the supernatant fraction. We have characterized by electron microscopy two fractions, PII and PIII, enriched in mossy fiber synaptosomes; fraction PIII had 75% mossy fiber synaptosomes with well-preserved morphology (large size 3 μm, complex morphology, high synaptic vesicle density, multisynapses), whereas fraction PII contained 12%. These fractions were enriched in lactate dehydrogenase activity indicating that the integrity of synaptosomes was preserved. Compared with the other synaptosomal fractions, these fractions showed greater levels of dynorphin A (1–8) immunoreactivity and endogenous zinc, which are particularly concentrated in hippocampal mossy fiber terminals. Furthermore, we prepared synaptosomes from adult hippocampus after neonatal irradiation, which destroys the majority of granule cells and associated mossy fibers. The levels of dynorphin and zinc decreased by 88 and 70% in fraction PII and by 95 and 90%, respectively, in PIII. These results suggest that the rapid Percoll procedure is convenient for the purification of mossy fiber synaptosomes. 相似文献
4.
Targeting the Hippocampal Mossy Fiber Synapse for the Treatment of Psychiatric Disorders 总被引:1,自引:0,他引:1
Katsunori Kobayashi 《Molecular neurobiology》2009,39(1):24-36
It is widely known that new neurons are continuously generated in the dentate gyrus of the hippocampus in the adult mammalian
brain. This neurogenesis has been implicated in depression and antidepressant treatments. Recent evidence also suggests that
the dentate gyrus is involved in the neuropathology and pathophysiology of schizophrenia and other related psychiatric disorders.
Especially, abnormal neuronal development in the dentate gyrus may be a plausible risk factor for the diseases. The synapse
made by the mossy fiber, the output fiber of the dentate gyrus, plays a critical role in regulating neuronal activity in its
target CA3 area. The mossy fiber synapse is characterized by remarkable activity-dependent short-term synaptic plasticity
that is established during the postnatal development and is supposed to be central to the functional role of the mossy fiber.
Any defects, including developmental abnormalities, in the dentate gyrus and drugs acting on the dentate gyrus can modulate
the mossy fiber-CA3 synaptic transmission, which may eventually affect hippocampal functions. In this paper, I review recent
evidence for involvement of the dentate gyrus and mossy fiber synapse in psychiatric disorders and discuss potential importance
of drugs targeting the mossy fiber synapse either directly or indirectly in the therapeutic treatments of psychiatric disorders. 相似文献
5.
M. O. Krebs J. M. Desce M. L. Kemel C. Gauchy G. Godeheu A. Cheramy J. Glowinski 《Journal of neurochemistry》1991,56(1):81-85
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors. 相似文献
6.
Biosynthesis and Metabolism of Native and Oxidized Neuropeptide Y in the Hippocampal Mossy Fiber System 总被引:2,自引:0,他引:2
J. Brian McCarthy ‡Mary Walker §Joseph Pierce †Patricia Camp † Jeffrey D. White 《Journal of neurochemistry》1998,70(5):1950-1963
Abstract: Neuropeptide Y (NPY) gene expression is known to be modulated in the mossy fiber projection of hippocampal granule cells following seizure. We investigated NPY biosynthesis and metabolism in an attempt to characterize NPY biochemically as a neurotransmitter in the granule cell mossy fiber projection. NPY biosynthesis was compared in normal control animals and in animals that had experienced a single pentylenetetrazole-induced seizure. In situ hybridization analysis established the postseizure time course of preproNPY mRNA expression in the hippocampal formation, localizing the majority of increased preproNPY mRNA content to the hilus of the dentate gyrus. Radioimmunoassay analysis of the CA3/mossy fiber terminal subfield confirmed a subsequent increase in NPY peptide content. Biosynthesis of NPY peptide by granule cells and transport to the CA3/mossy fiber subfield was demonstrated by in vivo radiolabel infusion to the dentate gyrus/hilus followed by sequential HPLC purification of identified radiolabeled peptide from the CA3/mossy fiber terminal subfield. Additional in vivo radiolabeling studies revealed a postseizure increase in an unidentified NPY-like immunoreactive (NPY-LI) species. HPLC/radioimmunoassay analyses of CA3 subfield tissue extracts comparing normal control animals and pentylenetetrazole-treated animals confirmed the increased total NPY-LI, and demonstrated that the increased NPY-LI was comprised of a minor increase in native NPY and a major increase in the unknown NPY-LI. Data from subsequent and separate analyses incorporating immunoprecipitation with anti-C-terminal flanking peptide of NPY, further HPLC purification, and matrix-assisted laser desorption/ionization mass spectrometry support the conclusion that the unknown NPY-LI is methionine sulfoxide NPY. NPY and NPY-sulfoxide displayed differential calcium sensitivity for release from mossy fiber synaptosomes. Similar to NPY, NPY sulfoxide displayed high-affinity binding to each of the cloned Y1, Y2, Y4, and Y5 receptor subtypes. Postrelease inactivation of NPY was demonstrated in a mossy fiber synaptosomal preparation. Thus, the present study in combination with previously reported electrophysiological activity of NPY in the CA3 subfield demonstrates that NPY fulfills the classical criteria for a neurotransmitter in the hippocampal granule cell mossy fiber projection, and reveals the presence of two molecular forms of NPY that display differential mechanisms of release while maintaining similar receptor potencies. 相似文献
7.
Autoreceptor Regulation of Glutamate and Aspartate Release from Slices of the Hippocampal CA1 Area 总被引:4,自引:0,他引:4
David Martin Gonzalo A. Bustos Mark A. Bowe Sherrilynn D. Bray J. Victor Nadler 《Journal of neurochemistry》1991,56(5):1647-1655
Slices of hippocampal area CA1 were employed to test the hypothesis that the release of glutamate and aspartate is regulated by the activation of excitatory amino acid autoreceptors. In the absence of added Mg2+, N-methyl-D-aspartate (NMDA)-receptor antagonists depressed the release of glutamate, aspartate, and gamma-aminobutyrate evoked by 50 mM K+. Conversely, the agonist NMDA selectively enhanced the release of aspartate. The latter action was observed, however, only when the K+ stimulus was reduced to 30 mM. Actions of the competitive antagonists 3-[(+/- )-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP) and D-2-amino-5-phosphonovalerate (D-AP5) differed, in that the addition of either 1.2 mM Mg2+ or 0.1 microM tetrodotoxin to the superfusion medium abolished the depressant effect of CPP without diminishing the effect of D-AP5. These results suggest that the activation of NMDA receptors by endogenous glutamate and aspartate enhances the subsequent release of these amino acids. The cellular mechanism may involve Ca2+ influx through presynaptic NMDA receptor channels or liberation of a diffusible neuromodulator linked to the activation of postsynaptic NMDA receptors. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, a selective quisqualate receptor agonist, and kainate, an agonist active at both kainate and quisqualate receptors, selectively depressed the K(+)-evoked release of aspartate. Conversely, 6-cyano-7-nitro-quinoxaline-2,3-dione, an antagonist active at both quisqualate and kainate receptors, selectively enhanced aspartate release. These results suggest that glutamate can negatively modulate the release of aspartate by activating autoreceptors of the quisqualate, and possibly also of the kainate, type. Thus, the activation of excitatory amino acid receptors has both presynaptic and postsynaptic effects. 相似文献
8.
The kinetics of Ca2(+)-dependent release of glutamate from guinea-pig cerebrocortical synaptosomes evoked by KCl or 4-aminopyridine are investigated using a continuous fluorimetric assay. Release by both agents is biphasic, with a rapid phase complete within 2 s followed by a more extensive slow phase with a half-maximal release in 52 s for KCl-evoked release and greater than 120 s for 4-aminopyridine-evoked release. The two phases of glutamate release may reflect a dual localization of releasable vesicles at the active zone and in the bulk cytoplasm. Decreasing depolarization depresses the extent rather than increasing the time for half-maximal Ca2(+)-dependent release. Both the fast and the slow phases of glutamate release require external Ca2+ and cytoplasmic ATP. KCl depolarization produces a transient "spike" of cytoplasmic free Ca2+ [( Ca2+]c), which recovers to a plateau; the major component of glutamate release occurs during this plateau. Predepolarization in the absence of added external Ca2+, to inhibit transient Ca2+ channels, does not affect the subsequent glutamate release evoked by Ca2+ readdition. Thus, release involves primarily noninactivating Ca2+ channels. For a given increase in [Ca2+]c, KCl and 4-aminopyridine cause equal release of glutamate, while ionomycin releases much less glutamate. This lowered efficiency is not due to ATP depletion. It is concluded that glutamate exocytosis is evoked by localized Ca2+ entering through noninactivating voltage-dependent Ca2+ channels and that nonlocalized Ca2+ entry with ionomycin is inefficient. 相似文献
9.
Activation of Torpedo presynaptic muscarinic acetylcholine (ACh) receptors with the agonist oxotremorine (20 μM) results in the inhibition of Ca2+-dependent release of endogenous ACh from Torpedo synaptosomes. This effect is reversed by the muscarinic antagonist atropine (1 μM) which, by itself, has no effect. In contrast, under the same conditions the amount of newly synthesized radiolabeled [3H]ACh released is not affected by muscarinic ligands. These findings suggest that presynaptic muscarinic inhibition in the Torpedo is due to interference with the mobilization of ACh from a storage pool. 相似文献
10.
Presynaptic α2 Adrenoceptors Inhibit Glutamate Release from Rat Spinal Cord Synaptosomes 总被引:1,自引:0,他引:1
Yoshinori Kamisaki Toshihiro Hamada Kazuhisa Maeda Masahiko Ishimura Tadao Itoh 《Journal of neurochemistry》1993,60(2):522-526
Abstract: The presynaptic regulation of amino acid release from nerve terminals was investigated using synaptosomes prepared from the rat spinal cord. The basal releases of endogenous glutamate (Glu), aspartate (Asp), and γ-amino-butyric acid (GABA) were 34.6, 21.5, and 10.0 pmol/min/mg of protein, respectively. Exposure to a depolarizing concentration of KCl (30 m M ) evoked 2.7-, 1.5-, and 2.9-fold increases in Glu, Asp, and GABA release, respectively. Clonidine reduced the K+ -evoked overflow of Glu to 56% of the control overflow with a potency (IC50 ) of 17 n M , but it did not affect K+ -evoked overflow of Asp, GABA, and their basal releases. Similarly, noradrenaline inhibited the K+ -evoked overflow of Glu, although phenylephrine and isoproterenol showed no effect. The inhibitory effect of clonidine was counteracted by α2 -adrenoceptor antagonists, rauwolscine, yohimbine, and idazoxan, regardless of the imidazoline structures. Because Glu is considered a neurotransmitter of primary afferents that transmit both nociceptive and nonnociceptive stimuli in the spinal cord, these data suggest that part of Glu release may be regulated by the noradrenergic system through α2 adrenoceptors localized on the primary afferent terminals. 相似文献
11.
Serotonin Inhibits Acetylcholine Release from Rat Striatum Slices: Evidence for a Presynaptic Receptor-Mediated Effect 总被引:2,自引:2,他引:2
Rat brain striatum slices were incubated with [3H]choline, perfused with a physiological buffer, and stimulated by perfusion with a K+-enriched buffer for 2 min. The tritium overflow evoked by K+ was decreased by 5-hydroxytryptamine (serotonin, 5-HT) (maximal inhibition 10(-6) M). This effect of 5-HT was mimicked by several agonists (5-methoxytryptamine, N,N-dimethyl-tryptamine, bufotenin) and blocked by serotonergic antagonists (methiothepin, methysergide, cinanserin) but not by haloperidol; methiothepin and methysergide alone slightly increased the K+-evoked overflow of tritium (3H). Inhibition of the tritium release by 5-HT was not suppressed in the presence of tetrodotoxin (TTX) (10(-6) M). These results suggest that 5-HT tonically inhibits acetylcholine (ACh) release from striatal cholinergic neurons by acting on a presynaptic receptor localized on cholinergic terminals. 相似文献
12.
13.
Jon Henrik Laake Tove Anita Slyngstad Finn-Mogens mejda Haug Ole Petter Ottersen 《Journal of neurochemistry》1995,65(2):871-881
Abstract: The immunogold labeling for glutamate and glutamine was studied at the electron microscopic level in hippocampal slice cultures following inhibition of l -glutamine synthetase [ l -glutamate:ammonia ligase (ADP-forming); EC 6.3.1.2]. In control cultures, glutamate-like immunoreactivity was highest in terminals, intermediate in pyramidal cell bodies, and low in glial cells. Glutamine-like immunoreactivity was high in glial cells, intermediate in pyramidal cell bodies, and low in terminals. After inhibition of glutamine synthetase with l -methionine sulfoximine, glutamate-like immunoreactivity was reduced by 52% in terminals and increased nearly fourfold in glia. Glutamine-like immunoreactivity was reduced by 66% in glia following l -methionine sulfoximine, but changed little in other compartments. In cultures that were treated with both l -methionine sulfoximine and glutamine (1.0 m M ), glutamate-like immunoreactivity was maintained at control levels in terminals, whereas in glia glutamate-like immunoreactivity was increased and glutamine-like immunoreactivity was decreased to a similar extent as in cultures treated with l -methionine sulfoximine alone. We conclude that (a) glutamate accumulates in glia when the flux through glutamine synthetase is blocked, emphasizing the importance of this pathway for the handling of glutamate; and (b) glutamine is necessary for the maintenance of a normal level of glutamate in terminals, and neither reuptake nor de novo synthesis through pathways other than the glutaminase reaction is sufficient. 相似文献
14.
The endogenous level of cyclic AMP in incubated synaptosomes from cerebral cortex of guinea pigs was investigated after the addition of various agents to the incubation medium. It appeared that the synaptosomal suspension already contained exogenous adenosine. Preincubation with theophylline or with adenosine deaminase (ADase) decreased both the exogenous level of adenosine and the intrasynaptosomal level of cyclic AMP. The level of cyclic AMP was reincreased by the addition of adenosine agonists, especially 2-chloroadenosine. This increase was antagonized by deoxyadenosine and was not inhibited by dipyridamole. These results suggest that the adenosine derivatives in the synaptic cleft regulate the level of cyclic AMP in nerve terminals through adenosine receptor on the presynaptic membrane. ADP, ATP, dopamine, and histamine also stimulate the formation of cyclic AMP in the ADase-treated synaptosomes. 相似文献
15.
Matthijs Verhage Wim E. J. M. Ghijsen David G. Nicholls Victor M. Wiegant† 《Journal of neurochemistry》1991,56(4):1394-1400
In the present study, the release of the neuropeptide cholecystokinin-8 (CCK) from purified nerve terminals (synaptosomes) of the rat hippocampus was characterized with respect to the subcellular distribution, the release upon addition of various agents, the release kinetics, the Ca2+ and ATP dependence of release, and the relationship between CCK release and elevations of intraterminal free Ca2+ concentration ([Ca]i). These characteristics were compared with those for the release of classical transmitters in similar preparations. CCK-like immunoreactivity (CCK-LI) is enriched in the purified synaptosomal fraction of hippocampus homogenates and released in a strictly Ca2(+)-dependent manner upon chemical depolarization, addition of 4-aminopyridine, or stimulation with the Ca2+ ionophore ionomycin. The presence of Ca2+ in the medium significantly stimulates the basal efflux of CCK-LI from synaptosomes. The release upon stimulation develops gradually in time with no significant release in the first 10 s and levels off after 3 min of depolarization. At this time, a large amount of CCK-LI is still present inside the synaptosomes. A correlation exists between the release of CCK-LI and the elevations of [Ca]i. The release of CCK-LI is decreased, but not blocked, upon ATP depletion. These characteristics markedly differ from those for classical transmitters, which show a fast component of Ca2(+)-dependent (exocytotic) release, an absolute dependence on cellular ATP, and no marked stimulation of basal efflux in the presence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Adenosine and Glutamate Modulate Each Other's Release from Rat Hippocampal Synaptosomes 总被引:1,自引:3,他引:1
Abstract: In rat hippocampal synaptosomes, adenosine decreased the K+ (15 mM) or the kainate (1 mM) evoked release of glutamate and aspartate. An even more pronounced effect was observed in the presence of the stable adenosine analogue, R-phenylisopropyladenosine. All these effects were reversed by the selective adenosine A1 receptor antagonist 8-cyclo-pentyltheophylline. In the same synaptosomal preparation, K+ (30 mM) strongly stimulated the release of the preloaded [3H]adenosine in a partially Ca2+-dependent and tetrodotoxin (TTX)-sensitive manner. Moreover, in the same experimental conditions, both l -glutamate and l -aspartate enhanced the release of [3H]adenosine derivatives ([3H]ADD). The gluta-mate-evoked release was dose dependent and appeared to be Ca2+ independent and tetrodotoxin insensitive. This effect was not due to metabolism because even the nonmetabolizable isomers d -glutamate and d -aspartate were able to stimulate [3H]ADD release. In contrast, the specific glutamate agonists N-methyl-d -aspartate, kainate, and quisqualate failed to stimulate [3H]ADD release, suggesting that glutamate and aspartate effects were not mediated by known excitatory amino acid receptors. Moreover, NMDA was also ineffective in the absence of Mg2+ and l -glutamate-evoked release was not inhibited by adding the specific antagonists 2-amino-5-phosphonovaleric acid or 6–7-dinitroquinoxaline-2, 3-dione. The stimulatory effect did not appear specific for only excitatory amino acids, as γ-anunobutyric acid stimulated [3H]ADD release in a dose-related manner. These results suggest that, at least in synaptosomal preparations from rat hippocampus, adenosine and glutamate modulate each other's release. The exact mechanism of such interplay, although still, unknown, could help in the understanding of excitatory amino acid neurotoxicity. 相似文献
17.
Glutamate Neurotoxicity and the Inhibition of Protein Synthesis in the Hippocampal Slice 总被引:6,自引:0,他引:6
In some animal models of ischemia, neuronal degeneration can be prevented by the selective antagonism of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype, suggesting that glutamate released during ischemia causes injury by activating NMDA receptors. The rat hippocampal slice preparation was used as an in vitro model to study the pharmacology of glutamate toxicity and investigate why NMDA receptors are critical in ischemic injury. Acute toxicity was assessed by quantifying the inhibition of protein synthesis, which we confirmed by autoradiography to be primarily neuronal. The effect of NMDA was prevented by the specific antagonists MK-801 and ketamine, as well as by the less selective antagonist kynurenic acid. The less selective antagonists kynurenic acid and 6,7-dinitroquinoxaline-2,3-dione antagonized the effects of quisqualate and NMDA. In contrast to previous observations with dissociated neurons in tissue culture, the toxicity of glutamate was unaffected by antagonists, regardless of the glutamate concentration, the duration of exposure, or the presence of magnesium. The high concentration of glutamate required to inhibit protein synthesis and the inability of receptor antagonists to block the effect of glutamate suggest that either glutamate acts through a non-receptor-mediated mechanism, or that the receptor-mediated nature of glutamate effects are masked in the slice preparation, perhaps by the glial uptake of glutamate. The altered physiology induced by ischemia must potentiate the neurotoxicity of glutamate, because we observed with a brain slice preparation that only high concentrations of glutamate caused neurotoxicity in the presence of oxygen and glucose and that these effects were not reversed by glutamate receptor antagonists. 相似文献
18.
Ecto-nucleotidases play a pivotal role in terminating the signalling via ATP and in producing adenosine, a neuromodulator in the nervous system. We have now investigated the pattern of adenosine formation with different concentrations of extracellular ATP in rat hippocampal nerve terminals. It was found that adenosine formation is delayed with increasing concentrations of ATP. Also, the rate of adenosine formation increased sharply when the extracellular concentrations of ATP + ADP decrease below 5 M, indicating that ATP/ADP feed-forwardly inhibit ecto-5-nucleotidase allowing a burst-like formation of adenosine possibly designed to activate facilitatory A2A receptors. Initial rate measurements of ecto-5-nucleotidase in hippocampal nerve terminals, using IMP as substrate, showed that ATP and ADP are competitive inhibitors (apparent Ki of 14 and 4 M). In contrast, in hippocampal immunopurified cholinergic nerve terminals, a burst-like formation of adenosine is not apparent, suggesting that channelling processes may overcome the feed-forward inhibition of ecto-5-nucleotidase, thus favouring A1 receptor activation. 相似文献
19.
Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling cascade. This finding may provide further understanding of the mode of berberine action in the brain and highlights the therapeutic potential of this compound in the treatment of a wide range of neurological disorders. 相似文献
20.
The specific binding of L-[3H]glutamate was investigated in the presence and the absence of sodium ions in freshly prepared membranes from rat hippocampus. Sodium ions were found to have a biphasic effect; low concentrations induced a marked inhibition of the binding (in the range 0.5-5.0 mM), whereas higher concentrations resulted in a dose-dependent stimulation of binding (in the range 10-150 mM). These results permit the discrimination of two binding sites in hippocampal membranes. Both Na+-independent and Na+-dependent binding sites were saturable, exhibiting dissociation constants at 30 degrees C of 750 nM and 2.4 microM, respectively, with Hill coefficients not significantly different from unity, and maximal number of sites of 6.5 and 75 pmol/mg protein, respectively. [3H]Glutamate binding to both sites reached equilibrium between 5 and 10 min and was reversible. The relative potencies of a wide range of compounds, with known pharmacological activities, to inhibit [3H]glutamate binding were very different for the Na+-independent and Na+-dependent binding and suggested that the former sites were related to post-synaptic glutamate receptors, whereas the latter were related to high-affinity uptake sites. This conclusion was also supported by the considerable variation in the regional distribution of the Na+-dependent binding site, which paralleled that of the high-affinity glutamate uptake; the Na+-independent binding exhibited less regional variation. 相似文献