首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.  相似文献   

2.
Rattan S  Fan YP  Puri RN 《Life sciences》2002,70(18):2147-2164
Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.  相似文献   

3.
The tonic smooth muscles of lower esophageal sphincter (LES) and internal anal sphincter (IAS) are subject to modulation by the neurohumoral agents. We report that angiotensin (Ang) II-induced contraction of rat IAS and LES smooth muscle cells (SMC) was inhibited by Clostridium botulinum C3 exozyme, HA 1077 and Y 27632, suggesting a role for Rho kinase and a Rho-associated kinase (ROK). Ang II-induced contraction of the SMC was also attenuated by genistein, antibodies to the pp60(c-src), p(190) RhoGTPase-activating protein (p190 RhoGAP), carboxyl terminus of Galpha13, carboxyl terminus peptide, and ADP ribosylation factor (ARF) antibody. Ang II-induced increase in p(190) RhoGAP tyrosine phosphorylation was attenuated by genistein. Furthermore, Ang II-induced increase in smooth muscle tone and phosphorylation of myosin light chain (MLC; 20 kDa; MLC20-P) were attenuated by Y 27632 and genistein. The results suggest an important role for Galpha13 and pp60(c-src) in the intracellular events responsible for the activation of RhoA/ROK in Ang II-induced contraction of LES and IAS SMC.  相似文献   

4.
We investigated the protein kinases responsible for myosin regulatory light chain (LC20) phosphorylation and regulation of myosin light chain phosphatase (MLCP) activity during microcystin (phosphatase inhibitor)-induced contraction at low Ca2+ concentrations of rat ileal smooth muscle stretched in the longitudinal axis. Application of 1 microM microcystin induced LC20 diphosphorylation and contraction of beta-escin-permeabilized rat ileal smooth muscle at pCa 9. The PKC inhibitor GF-109203x, the MEK inhibitor PD-98059, and the p38 MAPK inhibitor SB-203580 significantly reduced this contraction. These inhibitory effects were abolished when the microcystin concentration was increased to 10 muM, indicating that application of these kinase inhibitors generated an increase in MLCP activity. GF-109203x and PD-98059, but not SB-203580, significantly decreased the phosphorylation level of the myosin-targeting subunit of MLCP, MYPT1, at Thr-697 (rat sequence) during microcystin-induced contraction at pCa 9. On the other hand, SB-203580, but not GF-109203x or PD-98059, significantly reduced the phosphorylation level of the PKC-potentiated phosphatase inhibitor of 17 kDa (CPI-17). A zipper-interacting protein kinase (ZIPK) inhibitor (SM1 peptide) and a Rho-associated kinase inhibitor (Y-27632) had little effect on microcystin-induced contraction at pCa 9. In conclusion, PKC, ERK1/2, and p38 MAPK pathways facilitate microcystin-induced contraction at low Ca2+ concentrations by contributing to the inhibition of MLCP activity either through phosphorylation of MYPT1 or CPI-17 [probably mediated by integrin-linked kinase (ILK)]. ILK and not ZIPK is likely to be the protein kinase responsible for LC20 diphosphorylation during microcystin-induced contraction of rat ileal smooth muscle at pCa 9, similar to its recently described role in vascular smooth muscle. The negative regulation of MLCP by PKC and MAPKs during microcystin-induced contraction at pCa 9, which is not observed in vascular smooth muscle, may be unique to phasic smooth muscle.  相似文献   

5.
The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [N-(4-pyridyl)-N'-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were approximately 30-fold more potent in the IAS (IC(50): 4.4 x 10(-7) and 7.9 x 10(-8) M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC(50): 1.3 x 10(-5) and 2.5 x 10(-6) M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.  相似文献   

6.
Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca(2+), KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and G?-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K(+) depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and G?-6850 (each 10(-5) M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs' SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS.  相似文献   

7.
Protein kinase C (PKC) and mitogen-activated protein (MAP) kinases have been implicated in the modulation of agonist-induced contractions of large vessels. However, their role in pressure- and agonist-induced constrictions of skeletal muscle arterioles, which have a major role in regulating peripheral resistance, is not clearly elucidated. Thus constrictions of isolated rat gracilis muscle arterioles (approximately 80 microm in diameter) to increases in intraluminal pressure and to norepinephrine (NE) or angiotensin II (ANG II) were assessed in the absence or presence of chelerythrine, PD-98058, and SB-203580 (inhibitors of PKC, p42/44 and p38 MAP kinase pathways, respectively). Arteriolar constriction to NE and ANG II were significantly reduced by chelerythrine (by approximately 90%) and unaffected by SB-203580, whereas PD-98058 decreased only ANG II-induced constrictions (by approximately 60%). Pressure-induced increases in wall tension (from 0.1 to 0.7 N/m) resulted in significant arteriolar constrictions (50% maximum) that were abolished by chelerythrine without altering smooth muscle intracellular Ca(2+) concentration ([Ca(2+)](i)) (fura 2 microfluorimetry). PD-98058 and SB-203580 significantly decreased the magnitude of myogenic tone (by 20% and 60%, respectively) and reduced the sensitivity of the myogenic mechanism to wall tension, causing a significant rightward shift in the wall tension-myogenic tone relationship without affecting smooth muscle [Ca(2+)i]. MAP kinases were demonstrated with Western blotting. Thus in skeletal muscle arterioles 1) PKC is involved in both myogenic and agonist-induced constrictions, 2) PD-98058-sensitive p42/44 MAP kinases modulate both wall tension-dependent and ANG II-induced constrictions, whereas 3) a SB-203580-sensitive p38 MAP kinase pathway seems to be specifically involved in the mechanotransduction of wall tension.  相似文献   

8.
Angiotensin II (ANG II) is a multifunctional hormone that exerts potent vasoconstrictor and hypertrophic effects on vascular smooth muscle. Here, we demonstrate that the p38 mitogen-activated protein (MAP) kinase pathway is involved in ANG II-induced vascular contraction. Addition of ANG II to rat aortic smooth muscle cells (SMC) caused a rapid and transient increase of p38 activity through activation of the AT(1) receptor subtype. This response to ANG II was strongly attenuated by pretreating cells with antioxidants and diphenylene iodonium and was mimicked by exposure of cells to H(2)O(2). Stimulation of p38 by ANG II resulted in the enzymatic activation of MAP kinase-activated protein (MAPKAP) kinase-2 and the phosphorylation of heat shock protein 27 (HSP27) in aortic SMC. Pretreatment of cells with the specific p38 MAP kinase inhibitor SB-203580 completely blocked the ANG II-dependent activation of MAPKAP kinase-2 and phosphorylation of HSP27. ANG II also caused a robust activation of MAPKAP kinase-2 in the intact rat aorta. Incubation with SB-203580 significantly decreased the potency of ANG II to induce contraction of rat aortic rings and depressed the maximal hormone response. These results suggest that the p38 MAP kinase pathway selectively modulates the vasoconstrictor action of ANG II in vascular smooth muscle.  相似文献   

9.
Molecular mechanisms underlying migration of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (SPC) were analyzed in light of the hypothesis that remodeling of the actin cytoskeleton should be involved. After SPC stimulation, mitogen-activated protein kinases (MAPKs), including p38 MAPK (p38) and p42/44 MAPK (p42/44), were found to be phosphorylated. Migration of cells toward SPC was reduced in the presence of SB-203580, an inhibitor of p38, but not PD-98059, an inhibitor of p42/44. Pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 phosphorylation and VSMC migration. Myosin light chain (MLC) phosphorylation occurred after SPC stimulation with or without pretreatment with SB-203580 or PTX. The MLC kinase inhibitor ML-7 and the Rho kinase inhibitor Y-27632 inhibited MLC phosphorylation but only partially inhibited SPC-directed migration. Complete inhibition was achieved with the addition of SB-203580. After SPC stimulation, the actin cytoskeleton formed thick bundles of actin filaments around the periphery of cells, and the cells were surrounded by elongated filopodia, i.e., magunapodia. The peripheral actin bundles consisted of alpha- and beta-actin, but magunapodia consisted exclusively of beta-actin. Such a remodeling of actin was reversed by addition of SB-203580 and PTX, but not ML-7 or Y-27632. Taken together, our biochemical and morphological data confirmed the regulation of actin remodeling and suggest that VSMCs migrate toward SPC, not only by an MLC phosphorylation-dependent pathway, but also by an MLC phosphorylation-independent pathway.  相似文献   

10.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

11.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

12.
Myofibroblasts generate the contractile force responsible for wound healing and pathological tissue contracture. In this paper the stress-relaxed collagen lattice model was used to study lysophosphatidic acid (LPA)-promoted myofibroblast contraction and the role of the small GTPase Rho and its downstream targets Rho kinase and myosin light chain phosphatase (MLCPPase) in regulating myofibroblast contraction. In addition, the regulation of myofibroblast contraction was compared with that of smooth muscle cells. LPA-promoted myofibroblast contraction was inhibited by the myosin light chain kinase (MLCK) inhibitors KT5926 and ML-7; however, in contrast to that observed in smooth muscle cells, elevation of intracellular calcium alone was not sufficient to promote myofibroblast contraction. These results suggest that Ca(2+)-mediated activation of MLCK, while necessary, is not sufficient to promote myofibroblast contraction. The specific Rho inactivator C3-transferase and the Rho kinase inhibitor Y-27632 inhibited LPA-promoted myofibroblast contraction, suggesting that contraction depends on activation of the Rho/Rho kinase pathway. Calyculin, a type 1 phosphatase inhibitor known to inhibit MLCPPase, could promote myofibroblast contraction in the absence of LPA, as well as restore contraction in the presence of C3-transferase or Y-27632. Together these results support a model whereby Rho/Rho kinase-mediated inhibition of MLCPPase is necessary for LPA-promoted myofibroblast contraction, in contrast to smooth muscle cells in which Ca(2+) activation of MLCK alone is sufficient to promote contraction.  相似文献   

13.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

14.
Although the primary roles of the kallikreinkinin system and the renin-angiotensin system are quite divergent, they are often intertwined under pathophysiological conditions. We examined the effect of ANG II on regulation of B(2) kinin receptors (B2KR) in vascular cells. Vascular smooth muscle cells (VSMC) were treated with ANG II in a concentration (10(-9)-10(-6) M)- and time (0-24 h)-dependent manner, and B2KR protein and mRNA levels were measured by Western blots and PCR, respectively. A threefold increase in B2KR protein levels was observed as early as 6 h, with a peak response at 10(-7) M. ANG II (10(-7) M) also increased B2KR mRNA levels twofold 4 h after stimulation. Actinomycin D suppressed the increase in B2KR mRNA and protein levels induced by ANG II. To elucidate the receptor subtype involved in mediating this regulation, VSMC were pretreated with losartan (AT(1) receptor antagonist) and/or PD-123319 (AT(2) receptor antagonist) at 10 microM for 30 min, followed by ANG II (10(-7) M) stimulation. Losartan completely blocked the ANG II-induced B2KR increase, whereas PD-123319 had no effect. In addition, expression of B2KR mRNA levels was decreased in AT(1A) receptor knockout mice. Finally, to determine whether ANG II stimulates B2KR expression via activation of the MAPK pathway, VSMC were pretreated with an inhibitor of p42/p44(mapk) (PD-98059) and/or an inhibitor of p38(mapk) (SB-202190), followed by ANG II (10(-7) M) for 24 h. Selective inhibition of the p42/p44(mapk) pathway significantly blocked the ANG II-induced increase in B2KR expression. These findings demonstrate that ANG II regulates expression of B2KR in VSMC and provide a rationale for studying the interaction between ANG II and bradykinin in the pathogenesis of vascular dysfunction.  相似文献   

15.
Angiotensin receptor antagonists have shown clinical promise in modulating vascular disease, in part by limiting smooth muscle cell proliferation and migration. The majority of studies examining the contribution of these receptors have been undertaken in cells derived from rat aorta, which primarily express the ANG II type 1 (AT(1)) receptor. This investigation studied the relative contribution of AT(1) and ANG II type 2 (AT(2)) receptors to the mitogenic program of porcine smooth muscle cells. Smooth muscle cells were derived from porcine coronary artery explants. The presence of both AT(1) and AT(2) receptors was demonstrated through ligand binding and RT-PCR analysis. Biochemical and cellular markers of proliferation were monitored in the presence of selective receptor antagonists. Smooth muscle cell migration was measured using both wound healing and Boyden chamber migration assays. Visualization of the AT(1) and AT(2) receptors in growing and quiescent porcine smooth muscle cells with epifluorescence microscopy demonstrated that their subcellular distribution varied with growth state. An examination with several growth assays revealed that both AT(1)-specific losartan and AT(2)-specific PD-123319 receptor antagonists inhibited ANG II-stimulated RNA and DNA synthesis, PCNA expression, and hyperplasia. ANG II induced both directional and nondirectional cell migration. AT(1) receptor antagonist treatment significantly decreased ANG II-induced directional migration only, whereas AT(2) receptor antagonist treatment significantly reduced both modes of migration. Interestingly, the focal adhesion kinase inhibitor PF-573228 also blocked migration but not proliferation. Furthermore, focal adhesion kinase activation in response to ANG II was prevented only by PD-123319, indicating that this activation is downstream of the AT(2) receptor. The observed role of the AT(2) receptor in ANG II-induced migration was confirmed with smooth muscle cells depleted of the AT(2) receptor with short hairpin RNA treatment.  相似文献   

16.
Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be altered in cardiovascular disorders. In the present study, we evaluated the relative contribution of PKC and Rho kinase to myogenic tone in cerebral arteries in hypertension. Myogenic tone and arterial wall calcium in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were measured simultaneously, and the effect of PKC and Rho kinase inhibitors on myogenic tone was evaluated. SHR arteries showed significantly greater myogenic tone than WKY arteries. Pressure/wall tension-arterial wall calcium curves showed a hyperbolic relation in WKY rats, but the curves for SHR arteries were parabolic. Myogenic tone was decreased by the Rho kinase inhibitors Y-27632 and HA-1077, with a significantly greater effect in SHR than in WKY arteries. Reduction in myogenic tone produced by the PKC inhibitor bisindolylmaleimide I in WKY and SHR arteries was significantly less than that produced by Rho kinase inhibition. The pressure-dependent increase in myogenic tone was significantly decreased by Y-27632, and the decrease was markedly greater than that produced by bisindolylmaleimide I in SHR arteries. In WKY arteries, the pressure-dependent increase in myogenic tone was decreased to a similar extent by Y-27632 and bisindolylmaleimide I. These results suggest greater myogenic tone with increased calcium sensitization in SHR arteries, largely because of Rho kinase activation, with a minor contribution of PKC activation.  相似文献   

17.
Tonic physiological activity of RhoA/Rho kinase contributes to the maintenance of penile flaccidity through its involvement in the Ca(2+) sensitization of erectile tissue smooth muscle. The present study hypothesized that Rho kinase is also involved in the modulation of Ca(2+) entry induced by alpha(1)-adrenoceptor stimulation of penile arteries. Rat penile arteries were mounted in microvascular myographs for simultaneous measurements of intracellular Ca(2+) ([Ca(2+)](i)) and force. The Rho-kinase inhibitor Y-27632 markedly reduced norepinephrine-mediated electrically induced contractions and the increases in both [Ca(2+)](i) and tension elicited by the alpha(1)-adrenoceptor agonist phenylephrine (Phe). In contrast, the protein kinase C (PKC) inhibitor Ro-31-8220 reduced tension without altering the Phe-induced increase in [Ca(2+)](i). In the presence of nifedipine, Y-27632 still inhibited the non-L-type Ca(2+) signal and blunted Phe contraction. Y-27632 did not impair the capacitative Ca(2+) entry evoked by store depletion with cyclopiazonic acid but largely reduced the Ba(2+) influx stimulated by Phe in fura-2 AM-loaded arteries. The addition of Y-27632 to arteries depolarized with high KCl markedly reduced tension without changing [Ca(2+)](i). In alpha-toxin-permeabilized penile arteries stimulated with threshold Ca(2+) concentrations, Y-27632 inhibited the sensitization induced by either guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) or Phe in the presence of GTPgammaS. However, Y-27632 failed to alter contractions induced by a maximal concentration of free Ca(2+). These results suggest that Rho kinase, besides its contribution to the Ca(2+) sensitization of the contractile proteins, is also involved in the regulation of Ca(2+) entry through a nonselective cation channel activated by alpha(1)-adenoceptor stimulation in rat penile arteries.  相似文献   

18.
To elucidate the possible role of Rho A/Rho-kinase on lysophosphatidic acid (LPA)-induced contraction in intact guinea-pig ileal smooth muscle, we examined effects of pretreatment with a specific inhibitor of Rho-kinase (Y-27632) on the LPA-induced contraction and MLC20 phosphorylation. In addition, we investigated whether LPA actually elicits an activation of Rho A by studying subcellular distribution of Rho A in unstimulated and stimulated smooth muscles by LPA. LPA induced a less intense, but sustained, contraction compared with ACh, and was accompanied by significant increases in MLC20 phosphorylation. The effects of LPA on tension and MLC20 phosphorylation were inhibited by Y-27632. The ACh-induced contraction, but not increases in MLC20 phosphorylation, was partially inhibited by Y-27632. High K+-induced contraction was unaffected by the inhibitor. LPA stimulated translocation of Rho A from the cytosol to the membrane fraction of the muscle. Translocation of Rho A was also induced by ACh and high K+. These results suggest that LPA-induced contraction of intact ileal smooth muscle is dominated through activation of Rho A and Rho-kinase and subsequent increases in MLC20 phosphorylation.  相似文献   

19.
Y Takayama  K Mizumachi 《FEBS letters》2001,508(1):111-116
When fibroblasts are plated on a type I collagen gel they reduce the size of the gel and the extent of collagen gel contraction reflects the motile activity of the fibroblasts. We found that both bovine and human lactoferrin (Lf) enhanced the collagen gel contractile activity of WI-38 human fibroblasts. Rho inhibitor (exoenzyme C3), Rho kinase inhibitor (Y-27632), myosin light chain kinase inhibitor (ML-7), MEK inhibitor (PD98059) and Src family tyrosine kinase inhibitor inhibited the Lf-enhanced collagen gel contraction. Treatment of fibroblasts with Lf induced the phosphorylation of myosin light chain (MLC) within 30 min. Lf-enhanced MLC phosphorylation was inhibited by Y-27632 and ML-7. These results suggest that Lf promotes the motility of fibroblasts by regulating MLC phosphorylation.  相似文献   

20.
To clarify whether cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) activation and Rho-kinase inhibition share a common mechanism to decrease the Ca2+ sensitivity of airway smooth muscle contraction, we examined the effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a stable cAMP analog, and (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide dihydrochloride, monohydrate (Y-27632), a Rho-kinase inhibitor, on carbachol (CCh)-, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-, 4beta-phorbol 12,13-dibutyrate (PDBu)-, and leukotriene D4 (LTD4)-induced Ca2+ sensitization in alpha-toxin-permeabilized rabbit tracheal and human bronchial smooth muscle. In rabbit trachea, CCh-induced smooth muscle contraction was inhibited by 8-BrcAMP and Y-27632 to a similar extent. However, GTPgammaS-induced smooth muscle contraction was resistant to 8-BrcAMP. In the presence of a saturating concentration of Y-27632, PDBu-induced smooth muscle contraction was completely reversed by 8-BrcAMP. Conversely, PDBu-induced smooth muscle contraction was resistant to Y-27632. In the presence of a saturating concentration of 8-BrcAMP, GTPgammaS-induced Ca2+ sensitization was also reversed by Y-27632. The 8-BrcAMP had no effect on the ATP-triggered contraction of tracheal smooth muscle that had been treated with calyculin A in rigor solutions. The 8-BrcAMP and Y-27632 additively accelerated the relaxation rate of PDBu- and GTPgammaS-treated smooth muscle under myosin light chain kinase-inhibited conditions. In human bronchus, LTD4-induced smooth muscle contraction was inhibited by both 8-BrcAMP and Y-27632. We conclude that cAMP/PKA-induced Ca2+ desensitization contains at least two mechanisms: 1) inhibition of the muscarinic receptor signaling upstream from Rho activation and 2) cAMP/PKA's preferential reversal of PKC-mediated Ca2+ sensitization in airway smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号