首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vince JW  Reithmeier RA 《Biochemistry》2000,39(18):5527-5533
The human Cl(-)/HCO(3)(-) anion exchanger (AE1) possesses a binding site within its 33 residue carboxyl-terminal region (Ct) for carbonic anhydrase II (CAII). The amino acid sequence comprising this CAII binding site was determined by peptide competition and by testing the ability of truncation and point mutants of the Ct sequence to bind CAII with a sensitive microtiter plate binding assay. A synthetic peptide consisting of the entire 33 residues of the Ct (residues 879-911) could compete with a GST fusion protein of the Ct (GST-Ct) for binding to immobilized CAII, while a peptide consisting of the last 16 residues (896-911) could not. A series of truncation mutants of the GST-Ct showed that the terminal 21 residues of AE1 were not required for binding CAII. Removal of four additional residues (887-890) from the Ct resulted in loss of CAII binding. Acidic residues in this region (D887ADD) were critical for binding since mutating this sequence in the GST-Ct to DAAA, AAAA, or NANN caused loss of CAII binding. A GST-Ct construct mutated to D887ANE, the homologous sequence in AE2, could bind CAII. AE2 is a widely expressed anion exchanger and has a homologous Ct region with 60% sequence identity to AE1. A GST fusion protein of the 33 residue Ct of AE2 could bind to CAII similarly to the Ct of AE1. Tethering of CAII to an acidic motif within the Ct of anion exchangers may be a general mechanism for promoting bicarbonate transport across cell membranes.  相似文献   

2.
The molecular identity of the apical HCO3(-)-secreting transporter in gastric mucous cells remains unknown despite its essential role in preventing injury and ulcer by gastric acid. Here we report the identification of a Cl-/HCO3- exchanger that is located on apical membranes of gastric surface epithelial cells. RT-PCR studies of mouse gastrointestinal tract mRNAs demonstrated that this transporter, known as anion exchanger isoform 4 (AE4), is expressed in both stomach and duodenum. Northern blot analysis of RNA from purified stomach epithelial cells indicated that AE4 is expressed at higher levels in mucous cells than in parietal cells. Immunoblotting experiments identified AE4 as a approximately 110- to 120-kDa protein in membranes from stomach epithelium and apical membranes from duodenum. Immunocytochemical staining demonstrated that AE4 is expressed in apical membranes of surface cells in both mouse and rabbit stomach and duodenum. Functional studies in oocytes indicated that AE4 functions as a Cl-/HCO3- exchanger. These data show that AE4 is an apical Cl-/HCO3- exchanger in gastric mucous cells and duodenal villus cells. On the basis of its function and location, we propose that AE4 may play an important role in mucosal protection.  相似文献   

3.
4.
HCO(3)(-) secretion is a vital activity in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelia. However, the role of CFTR in this activity is not well understood. Simultaneous measurements of membrane potential and pH(i) and/or current in CFTRexpressing Xenopus oocytes revealed dynamic control of CFTR Cl(-)/HCO(3)(-) permeability ratio, which is regulated by external Cl(-) (Cl(-)(o)). Thus, reducing external Cl(-) from 110 to 0-10 mm resulted in the expected increase in membrane potential, but with no corresponding OH(-) or HCO(3)(-) influx. Approximately 3-4 min after reducing Cl(o)(-) to 0 mm, an abrupt switch in membrane potential occurs that coincided with an increased rates of OH(-) and HCO(3)(-) influx. The switch in membrane permeability to OH(-)/HCO(3)(-) can also be recorded as a leftward shift in the reversal potential. Furthermore, an increased rate of OH(-) influx in response to elevating pH(o) to 9.0 was observed only after the switch in membrane potential. The time to switch increased to 11 min at Cl(o)(-) of 5 mm. Conversely, re-addition of external Cl(-) after the switch in membrane potential did not stop HCO(3)(-) influx, which continued for about 3.9 min after Cl(-) addition. Importantly, addition of external Cl(-) to cells incubated in Cl(-)-free medium never resulted in HCO(3)(-) efflux. Voltage and current clamp experiments showed that the delayed HCO(3)(-) transport is electrogenic. These results indicate that CFTR exists in two conformations, a Cl(-) only and a Cl(-) and OH(-)/HCO(3)(-) permeable state. The switch between the states is controlled by external Cl(-). Accordingly, a different tryptic pattern of CFTR was found upon digestion in Cl(-)-containing and Cl(-)-free media. The physiological significance of these finding is discussed in the context of HCO(3)(-) secretion by tissues such as the pancreas and salivary glands.  相似文献   

5.
Myocardial pH(i) recovery from intracellular alkalization results in part from the acid load (-J(H+)) carried by Cl(-)/HCO(3)(-) anion-exchangers (AE). Three AE isoforms, AE1, AE2 and AE3, have been identified in cardiac membranes, but the function of each isoform on pH(i) homeostasis is still under investigation. This work explored, by means of specific antibodies, the role of AE3 isoform in myocardial pH(i) regulation. We developed rabbit polyclonal antibodies against the extracellular "loops": one connecting the fifth to sixth and the other one the seventh to eighth transmembrane domains (loops 3 and 4, respectively) of AE3, and their effect on pH(i) regulation was studied in rat papillary muscles. The anti-AE3 loop 3 antibody decreased -J(H+) in response to myocardial alkalization (from a mean control value of 1.06+/-0.26 to 0.32+/-0.13 mmol/L/min, n=7, P<0.05) without affecting the baseline pH(i) (7.22+/-0.03 vs. 7.21+/-0.04). The anti-AE3 loop 4 antibody did not modify either pH(i) recovery or baseline pH(i). Under control conditions, endothelin-1 (ET-1) increased -J(H+) in response to myocardial alkalization from 1.30+/-0.18 to 2.01+/-0.33 mmol/L /min (n=5, P<0.05). This effect of ET-1 on -J(H+) was abolished by anti-AE3 loop 3 antibody. In addition, the MgATP-induced stimulation of AE activity was reduced by the anti-AE3 loop 3 antibody. These data support the key role of the AE3 isoform in myocardial pH(i) recovery from alkaline loads and also in the stimulatory effect of ET-1 on AE activity. To a lesser extent, it may also contribute to the effect of MgATP on pH(i).  相似文献   

6.
The renal cortical collecting duct (CCD) plays an important role in systemic acid-base homeostasis. The beta-intercalated cells secrete most of the HCO(-)(3), which is mediated by a luminal, DIDS-insensitive, Cl(-)/HCO(-)(3) exchange. The identity of the luminal exchanger is a matter of debate. Anion exchanger isoform 4 (AE4) cloned from the rabbit kidney was proposed to perform this function (Tsuganezawa H et al. J Biol Chem 276: 8180-8189, 2001). By contrast, it was proposed (Royaux IE et al. Proc Natl Acad Sci USA 98: 4221-4226, 2001) that pendrin accomplishes this function in the mouse CCD. In the present work, we cloned, localized, and characterized the function of the rat AE4. Northern blot and RT-PCR showed high levels of AE4 mRNA in the CCD. Expression in HEK-293 and LLC-PK(1) cells showed that AE4 is targeted to the plasma membrane. Measurement of intracellular pH (pH(i)) revealed that AE4 indeed functions as a Cl(-)/HCO(-)(3) exchanger. However, AE4 activity was inhibited by DIDS. Immunolocalization revealed species-specific expression of AE4. In the rat and mouse CCD and the mouse SMG duct AE4 was in the basolateral membrane. By contrast, in the rabbit, AE4 was in the luminal and lateral membranes. In both, the rat and rabbit CCD AE4 was in alpha-intercalated cells. Importantly, localization of AE4 was not affected by the systemic acid-base status of the rats. Therefore, we conclude that expression and possibly function of AE4 is species specific. In the rat and mouse AE4 functions as a Cl(-)/HCO(-)(3) exchanger in the basolateral membrane of alpha-intercalated cells and may participate in HCO(-)(3) absorption. In the rabbit AE4 may contribute to HCO(-)(3) secretion.  相似文献   

7.
The kidneys play pivotal roles in acid-base homeostasis, and the acid-secreting (alpha-type) and bicarbonate-secreting (beta-type) intercalated cells in the collecting ducts are major sites for the final modulation of urinary acid secretion. Since the H(+)-ATPase and anion exchanger activities in these two types of intercalated cells exhibit opposite polarities, it has been suggested that the alpha- and beta-intercalated cells are interchangeable via a cell polarity change. Immunohistological studies, however, have failed to confirm that the apical anion exchanger of beta-intercalated cells is the band 3 protein localized to the basolateral membrane of alpha-intercalated cells. In the present study, we show the evidence that a novel member of the anion exchanger and sodium bicarbonate cotransporter superfamily is an apical anion exchanger of beta-intercalated cells. Cloned cDNA from the beta-intercalated cells shows about 30% homology with anion exchanger types 1-3, and functional expression of this protein in COS-7 cells and Xenopus oocytes showed sodium-independent and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-insensitive anion exchanger activity. Furthermore, immunohistological studies revealed that this novel anion exchanger is present on the apical membrane of beta-intercalated cells, although some beta-intercalated cells were negative for AE4 staining. We conclude that our newly cloned transporter is an apical anion exchanger of the beta-intercalated cells, whereas our data do not exclude the possibility that there may be another form of anion exchanger in these cells.  相似文献   

8.
Anion exchanger 1 (AE1) is the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes. Carbonic anhydrases (CA) provide substrate for AE1 by catalyzing the reaction, H(2)O + CO(2) ? HCO(3)(-) + H(+). The physical complex of CAII with AE1 has been proposed to maximize anion exchange activity. To examine the effect of CAII catalysis on AE1 transport rate, we fused either CAII-wild type or catalytically inactive CAII-V143Y to the cytoplasmic COOH terminus of AE1 to form AE1.CAII and AE1.CAII-V143Y, respectively. When expressed in transfected human embryonic kidney 293 cells, AE1.CAII had a similar Cl(-)/HCO(3)(-) exchange activity to AE1 alone, as assessed by the flux of H(+) equivalents (87 ± 4% vs. AE1) or rate of change of intracellular Cl(-) concentration (93 ± 4% vs. AE1), suggesting that CAII does not activate AE1. In contrast, AE1.CAII-V143Y displayed transport rates for H(+) equivalents and Cl(-) of 55 ± 2% and of 40 ± 2%, versus AE1. Fusion of CAII to AE1 therefore reduces anion transport activity, but this reduction is compensated for during Cl(-)/HCO(3)(-) exchange by the presence of catalytically active CAII. Overexpression of free CAII-V143Y acts in a dominant negative manner to reduce AE1-mediated HCO(3)(-) transport by displacement of endogenous CAII-wild type from its binding site on AE1. To examine whether AE1.CAII bound endogenous CAII, we coexpressed CAII-V143Y along with AE1 or AE1.CAII. The bicarbonate transport activity of AE1 was inhibited by CAII-V143Y, whereas the activity of AE1.CAII was unaffected by CAII-V143Y, suggesting impaired transport activity upon displacement of functional CAII from AE1 but not AE1.CAII. Taken together, these data suggest that association of functional CAII with AE1 increases Cl(-)/HCO(3)(-) exchange activity, consistent with the HCO(3)(-) transport metabolon model.  相似文献   

9.
In the normal ileum, coupled NaCl absorption occurs via the dual operation of Na(+)/H(+) and Cl(-)/HCO(-)(3) exchange on the brush-border membrane (BBM) of villus cells. In a rabbit model of chronic small intestinal inflammation we determined the cellular mechanism of inhibition of NaCl absorption and the effect of steroids on this inhibition. Cl(-)/HCO(-)(3) but not Na(+)/H(+) exchange was reduced in the BBM of villus cells during chronic ileitis. Cl(-)/HCO(-)(3) exchange was inhibited secondary to a decrease in the affinity for Cl(-) rather than an alteration in the maximal rate of uptake of Cl(-) (V(max)). Methylprednisolone (MP) stimulated Cl(-)/HCO(-)(3) exchange in the normal ileum by increasing the V(max) of Cl(-) uptake rather than altering affinity for Cl(-). MP reversed the inhibition of Cl(-)/HCO(-)(3) exchange in rabbits with chronic ileitis. However, MP alleviated the Cl(-)/HCO(-)(3) exchange inhibition by restoring the affinity for Cl(-) rather than altering the V(max) of Cl(-) uptake. These data suggest that glucocorticoids mediate the alleviation of Cl(-)/HCO(-)(3) exchange inhibition in chronically inflamed ileum by reversing the same mechanism that was responsible for inhibition of this transporter rather than exerting a direct effect on the transporter itself, as was the case in normal ileum.  相似文献   

10.
Thickening of airway mucus and lungdysfunction in cystic fibrosis (CF) results, at least in part, fromabnormal secretion of Cl and HCO3across the tracheal epithelium. The mechanism of the defect in HCO3 secretion is ill defined; however, a lack ofapical Cl/HCO3 exchange may exist inCF. To test this hypothesis, we examined the expression ofCl/HCO3 exchangers in trachealepithelial cells exhibiting physiological features prototypical ofcystic fibrosis [CFT-1 cells, lacking a functional cystic fibrosistransmembrane conductance regulator (CFTR)] or normal trachea (CFT-1cells transfected with functional wild-type CFTR, termed CFT-WT). Cellswere grown on coverslips and were loaded with the pH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, andintracellular pH was monitored. Cl/HCO3exchange activity increased by ~300% in cells transfected with functional CFTR, with activities increasing from 0.034 pH/min in CFT-1cells to 0.11 in CFT-WT cells (P < 0.001, n = 8). This activity was significantly inhibited byDIDS. The mRNA expression of the ubiquitous basolateral AE-2Cl/HCO3 exchanger remained unchanged.However, mRNA encoding DRA, recently shown to be aCl/HCO3 exchanger (Melvin JE, Park K,Richardson L, Schultheis PJ, and Shull GE. J Biol Chem 274:22855-22861, 1999.) was abundantly expressed in cells expressingfunctional CFTR but not in cells that lacked CFTR or that expressedmutant CFTR. In conclusion, CFTR induces the mRNA expression of"downregulated in adenoma" (DRA) and, as a result, upregulates theapical Cl/HCO3 exchanger activity intracheal cells. We propose that the tracheal HCO3secretion defect in patients with CF is partly due to thedownregulation of the apical Cl/HCO3exchange activity mediated by DRA.

  相似文献   

11.
Cell migration is crucial for processes such as immune defense, wound healing, or the formation of tumor metastases. Typically, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing the front and rear of the cell, respectively. Here, we address the question of whether this polarization also extends to the distribution of ion transporters such as Na(+)/H(+) exchanger (NHE) and anion exchanger in the plasma membrane of migrating cells. Both transporters are required for locomotion of renal epithelial (Madin-Darby canine kidney, MDCK-F) cells and human melanoma cells since their blockade reduces the rate of migration in a dose-dependent manner. Inhibition of migration of MDCK-F cells by NHE blockers is accompanied by a decrease of pH(i). However, when cells are acidified with weak organic acids, migration of MDCK-F cells is normal despite an even more pronounced decrease of pH(i). Under these conditions, NHE activity is increased so that cells are swelling due to the accumulation of organic anions and Na(+). When exclusively applied to the lamellipodium, blockers of NHE or anion exchange inhibit migration of MDCK-F cells as effectively as when applied to the entire cell surface. When they are directed to the cell body, migration is not affected. These data are confirmed immunocytochemically in that the anion exchanger AE2 is concentrated at the front of MDCK-F cells. Our findings show that NHE and anion exchanger are distributed in a polarized way in migrating cells. They are consistent with important contributions of both transporters to protrusion of the lamellipodium via solute uptake and consequent volume increase at the front of migrating cells.  相似文献   

12.
DRA (down regulated in adenoma) is an intestinal anion exchanger, acting in parallel with NHE3 to facilitate ileal and colonic NaCl absorption. Furthermore it is involved in small intestinal bicarbonate secretion. Because DRA has a PDZ interaction motif, which may influence its properties, we searched for DRA-interacting PDZ adapter proteins in the small intestine. Using an overlay assay with the recombinant DRA C-terminus as a ligand, a 70 kDa protein was labeled, which was restricted to the brush border membrane in rabbit duodenal and ileal mucosa and was not detected in the colon. Destruction of the C-terminal PDZ interaction motif abolished this band, suggesting a specific protein-protein interaction. The 70 kDa protein was identified as CAP70 (CFTR associated protein of 70 kDa) by an anti-CAP70 antibody and by two in vitro binding assays after cloning CAP70 from rabbit duodenum and ileum. The interaction was recapitulated in HEK cells transfected with DRA and PDZK1, the human orthologue of CAP70. Corresponding to the overlay assay, no CAP70 mRNA or protein was detected in the colon. In vitro protein-protein interaction studies revealed specific binding of DRA to the 2nd and 3rd PDZ domain, while CFTR is known to interact with PDZ1, PDZ3, and PDZ4. The composition of macromolecular complexes assembled by CAP70 in the distal small bowel is unknown. Its restricted expression shows that it cannot be involved in NaCl absorption in the proximal colon. We suggest that CAP70 mediates regulatory functions specific to the small intestine.  相似文献   

13.
ACE, accessory cholera enterotoxin, the thirdenterotoxin in Vibrio cholerae, has been reported toincrease short-circuit current (Isc) in rabbitileum and to cause fluid secretion in ligated rabbit ileal loops. Westudied the ACE-induced change in Isc andpotential difference (PD) in T84 monolayers mounted in modified Ussingchambers, an in vitro model of a Cl secretory cell. ACEadded to the apical surface alone stimulated a rapid increase inIsc and PD that was concentration dependent andimmediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cland HCO3. ACE acted synergistically with theCa2+-dependent acetylcholine analog, carbachol, tostimulate secretion in T84 monolayers. In contrast, the secretoryresponse to cAMP or cGMP agonists was not enhanced by ACE. TheACE-stimulated secretion was dependent on extracellular andintracellular Ca2+ but was not associated with an increasein intracellular cyclic nucleotides. We conclude that the mechanism ofsecretion by ACE involves Ca2+ as a second messenger andthat this toxin stimulates a novel Ca2+-dependent synergy.

  相似文献   

14.
We studied the participation of carbonic anhydrase (CA), V-H(+)-ATPase, and Cl(-)/HCO3- exchanger in electrogenic ion absorption through the gills of Chasmagnathus granulatus. CA activity was measured in anterior gills and posterior gills after acclimation to 2 per thousand, 10 per thousand, 30 per thousand (about seawater), and 45 per thousand salinity. The highest CA specific activity was detected in the microsomal fraction in anterior gills, and in the cytosolic fraction, in posterior ones. Both fractions were strongly induced by decreasing salinity only in posterior gills. Perfusion of posterior gills from crabs acclimated to either 2 per thousand or 10 per thousand with acetazolamide inhibited CA activity almost completely. In posterior gills from crabs acclimated to 2 per thousand and perfused with 20 per thousand saline (iso-osmotic for these crabs), acetazolamide reduced transepithelial potential difference (V(te)) by 47%, further addition of ouabain enhanced the effect to 88%. Acetazolamide had no effect in the same gills perfused with 30 per thousand saline (iso-osmotic for seawater acclimated crabs). Bafilomycin A1 and SITS (inhibitors of V-H(+)-ATPase and Cl(-)/HCO3-) reduced V(te) by 15-16% in gills perfused with normal 20 per thousand saline, and by 77% and 45%, respectively when they were applied in Na-free 20 per thousand saline, suggesting the participation of those transporters and cytosolic CA in electrogenic ion absorption.  相似文献   

15.
The apical Cl-/HCO exchanger called the putative anion transporter (PAT1; SLC26A6) is expressed on apical membranes of villus cells in the duodenum, but its location in the stomach remains unknown. Here we examined the cell distribution and membrane location of PAT1 in mouse stomach. Immunofluorescence labeling studies with anti-PAT1 antibodies and Dolichos biflorus agglutinin indicated the exclusive expression of PAT1 in gastric parietal cells. Double immunocytochemical staining revealed colocalization of PAT1 with the gastric H-K-ATPase, consistent with expression in tubulovesicles and/or the secretory canaliculus. Radiolabeled 36Cl flux studies demonstrated the functional presence of Cl-/HCO exchange in purified tubulovesicles of parietal cells. The expression of PAT1 was significantly decreased in parietal cells of gastric H-K-ATPase-null mice, which exhibit a sharp reduction in tubulovesicle membranes. These data indicate that the Cl-/HCO exchanger PAT1 is localized on tubulovesicular membranes, and they are consistent with the hypothesis that it functions in the maintenance of intravesicular ion concentrations in the resting state and dehydration of vesicles derived from the secretory membranes following the transition from the stimulated to the resting state.  相似文献   

16.
Reduced gastrointestinal HCO3- secretion contributes to malabsorption and obstructive syndromes in cystic fibrosis. The apical HCO3- transport pathways in these organs have not been defined. We therefore assessed the involvement of apical Cl-/HCO3- exchangers and anion conductances in basal and cAMP-stimulated duodenal HCO3- secretion. Muscle-stripped rat and rabbit proximal duodena were mounted in Ussing chambers, and electrical parameters, HCO3- secretion rates, and 36Cl-, 22Na+, and 3H+ mannitol fluxes were assessed. mRNA expression levels were measured by a quantitative PCR technique. Removal of Cl- from or addition of 1 mM DIDS to the luminal perfusate markedly decreased basal HCO3- secretion but did not influence the HCO3- secretory response to 8-bromo-cAMP, which was inhibited by luminal 5-nitro-2-(3-phenylpropylamino)-benzoate. Bidirectional 22Na+ and 36Cl- flux measurements demonstrated an inhibition rather than a stimulation of apical anion exchange during cAMP-stimulated HCO3- secretion. The ratio of Cl- to HCO3- in the anion secretory response was compatible with both Cl- and HCO3- being secreted via the CFTR anion channel. CFTR expression was very high in the duodenal mucosa of both species. We conclude that in rat and rabbit duodena, an apical Cl-/HCO3- exchanger mediates a significant part of basal HCO3- secretion but is not involved in the HCO3- secretory response to cAMP analogs. The inhibitor profile, the strong predominance of Cl- over HCO3- in the anion secretory response, and the high duodenal CFTR expression levels suggest that a major portion of cAMP-stimulated duodenal HCO3- secretion is directly mediated by CFTR.  相似文献   

17.
The initial rate of Zn2+ uptake in human red cells was measured by atomic absorption. A very important fraction of Zn2+ uptake was inhibited by DIDS with IC50 = 0.3 microM (and by furosemide and bumetanide with IC50 of 200 and 500 microM, respectively). DIDS-sensitive Zn2+ uptake exhibited the following properties: 1) It required the simultaneous presence of both external HCO3- and Cl-. 2) In Cl- containing media, it was strongly stimulated by external HCO3- following a sigmoidal (S-shaped) and saturable function, which was fitted by a Hanes equation, with n = 2 and an apparent dissociation constant (for external HCO3-) of 5.3 +/- 0.9 mM (mean +/- SD of four experiments). The maximal rate of Zn2+ uptake at saturating HCO3- concentrations was 50.7 +/- 4.8 mmol (liter cells x h)-1. 3) In HCO3- containing media, it was strongly stimulated by external Cl- following a Michaelis-like equation with an apparent dissociation constant (for external Cl-) of 88 +/- 11 mM (mean +/- SD of three experiments). 4) Bicarbonate-stimulated Zn2+ uptake was inhibited by physiological concentrations of phosphate (sulfate was a much less potent inhibitor than phosphate). A kinetic analysis of the data strongly suggested that zinc was transported by the anion carrier in the form of the monovalent anion complex: [Zn(HCO3)2Cl]-.  相似文献   

18.
The basolateral Cl(-)/HCO(3)(-) exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H(+)-K(+)-ATPase. Here, we report the identification of a new Cl(-)/HCO(3)(-) exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl(-)/HCO(3)(-) exchanger that is active in both acidic and alkaline pH(i). On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl(-)/HCO(3)(-) exchanger in gastric parietal cells and plays a major role in gastric acid secretion.  相似文献   

19.
The Cl(-)/HCO3- exchanger (AE) is one of the mechanisms that cells have developed to adjust pH Despite its importance, the role of AE isoforms in controlling steady-state pH during alkalosis has not been widely investigated. In the present study, we have evaluated whether conditions simulating acute and chronic metabolic alkalosis affected the transport activity and protein levels of Cl-/HCO3- exchangers in a rat cortical collecting duct cell line (RCCD1). pH(i) was monitored using the fluorescent dye BCECF in monolayers grown on permeable supports. Anion exchanger function was assessed by the response of pH(i) to acute chloride removal. RT-PCR and immunoblot assays were also performed. Our results showed that RCCD1 cells express two members of the anion exchanger gene family: AE2 and AE4. Functional studies demonstrated that while in acute alkalosis pH(i) became alkaline and was not regulated, after 48 h adaptation; steady-state pH(i) reached a value similar to the physiological one. Chronic treated cells also resulted in a 3-fold rise in Cl(-)/HCO3- exchange activity together with a 2.2-fold increase in AE2, but not AE4, protein abundance. We conclude that RCCD1 cells can adapt to chronic extracellular alkalosis reestablishing its steady-state pH(i) and that AE2 would play a key role in cell homeostasis.  相似文献   

20.
Basal HCO(3)(-) secretion across the duodenum has been shown in several species to principally involve the activity of apical membrane Cl(-)/HCO(3)(-) exchanger(s). To investigate the identity of relevant anion exchanger(s), experiments were performed using wild-type (WT) mice and mice with gene-targeted deletion of the following Cl(-)/HCO(3)(-) exchangers localized to the apical membrane of murine duodenal villi: Slc26a3 [down-regulated in adenoma (DRA)], Slc26a6 [putative anion transporter 1 (PAT-1)], and Slc4a9 [anion exchanger 4 (AE4)]. RT-PCR of the isolated villous epithelium demonstrated PAT-1, DRA, and AE4 mRNA expression. Using the pH-sensitive dye BCECF, anion exchange rates were measured across the apical membrane of epithelial cells in the upper villus of the intact duodenal mucosa. Under basal conditions, Cl(-)/HCO(3)(-) exchange activity was reduced by 65-80% in the PAT-1(-) duodenum, 30-40% in the DRA(-) duodenum, and <5% in the AE4(-) duodenum compared with the WT duodenum. SO(4)(2-)/HCO(3)(-) exchange was eliminated in the PAT-1(-) duodenum but was not affected in the DRA(-) and AE4(-) duodenum relative to the WT duodenum. Intracellular pH (pH(i)) was reduced in the PAT-1(-) villous epithelium but increased to WT levels in the absence of CO(2)/HCO(3)(-) or during methazolamide treatment. Further experiments under physiological conditions indicated active pH(i) compensation in the PAT-1(-) villous epithelium by combined activities of Na(+)/H(+) exchanger 1 and Cl(-)-dependent transport processes at the basolateral membrane. We conclude that 1) PAT-1 is the major contributor to basal Cl(-)/HCO(3)(-) and SO(4)(2-)/HCO(3)(-) exchange across the apical membrane and 2) PAT-1 plays a role in pH(i) regulation in the upper villous epithelium of the murine duodenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号