首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of surface charges of liposomes in immunopotentiation   总被引:1,自引:0,他引:1  
The purpose of this study was to establish the effect of surface charges of liposomes on its adjuvant activity to an entrapped protein antigen. The immune responses of rabbits immunized subcutaneously with lysozyme entrapped in neutral negatively and positively charged liposomes and compared with complete Freund's adjuvant (CFA), showed positively charged liposomes to be a better adjuvant than neutral, negatively charged liposomes and even CFA. This was true for solid liposomes also. Interestingly, injection of positively charged liposomes led to the formation of granulomas at the sites of immunization, which was not observed with neutral and negatively charged liposomes.  相似文献   

2.
The immune responses against human serum albumin (HSA) and bovine gamma globulin (BGG) were studied in rabbits after intravenous injections of various preparations of these antigens. Antigens were injected free in saline, coated on “empty” liposomes or both coated on liposomes, and entrapped in their inner compartments. The earlier established adjuvant effect of the liposomes was confirmed for both antigens. Although the amount of antigen entrapped in the liposomes was much higher than the amount coated on their outer surfaces, liposomes containing the antigen both in their inner compartments and on their outer surface showed no stronger adjuvant effect than “empty” liposomes coated with the antigen only. The results support the hypothesis that the adjuvant effect of liposomes is mediated by antigens exposed on the outer surfaces of the liposomes. Suggestions are made for the use of liposomes as a practical immunoadjuvant with definite advantages over many other adjuvants.  相似文献   

3.
We previously reported that liposomes having differential lipid components displayed differential adjuvant effects when antigen was coupled with liposomes via glutaraldehyde. In the present study, antigen-liposome conjugates prepared using liposomes having differential lipid components were added to the macrophage culture, and phagocytosis and the antigen digest of liposome-coupled antigen by macrophages were then investigated. Antigen presentation by macrophages to an antigen-specific T-cell clone was further investigated using the same conjugates. Antigen-liposome conjugates which induced higher levels of antibody production in vivo were recognized more often, and the liposome-coupled antigen was digested to a greater degree by macrophages than antigen-liposome conjugates which induced lower levels of antibody production. These results correlated closely with those regarding antigen presentation by macrophages; when antigen was coupled to liposomes showing higher adjuvant effect, macrophages cocultured with antigen-liposome conjugates activated antigen-specific T-cells at a higher degree. The concentration of OVA in the macrophage culture added as antigen-liposome conjugates was approximately 32 microg/mL. However, the extent of T-cell activation was almost equal to that when 800 microg/mL of soluble OVA was added to the culture. The results of the present study demonstrated that the adjuvant activity of liposomes observed primary in vivo correlated closely with the recognition of antigen-liposome conjugates and antigen presentation of liposome-coupled antigen by macrophages, suggesting that the adjuvant effects of liposomes are exerted at the beginning of the immune response, i.e., recognition of antigen by antigen-presenting cells.  相似文献   

4.
In the previous study, we investigated the induction of ovalbumin (OVA)-specific antibody production in mice by OVA-liposome conjugates made using four different lipid components, including unsaturated carrier lipid and three different saturated carrier lipids. All of the OVA-liposome conjugates tested induced IgE-selective unresponsiveness. The highest titer of anti-OVA IgG was observed in mice immunized with OVA-liposomes made using liposomes with the highest membrane fluidity, suggesting that the membrane fluidity of liposomes affects their adjuvant effect. In this study, liposomes with five different cholesterol inclusions, ranging from 0% to 43% of the total lipid, were made, and the induction of OVA-specific antibody production by OVA-liposome conjugates was compared among these liposome preparations. In contrast to the results in the previous study, liposomes that contained no cholesterol and possessed the lowest membrane fluidity demonstrated the highest adjuvant effect for the induction of IgG antibody production. In addition, when the liposomes with four different lipid compositions were used, OVA-liposome conjugates made using liposomes that did not contain cholesterol induced significantly higher levels of anti-OVA IgG antibody production than did those made using liposomes that contained cholesterol and, further, induced significant production of anti-OVA IgE. These results suggest that cholesterol inclusion in liposomes affects both adjuvanticity for IgG production and regulatory effects on IgE synthesis by the surface-coupled antigen of liposomes.  相似文献   

5.
Liposomes, the artificial phospholipid vesicles, have the capacity of entrapping water soluble substances in their aqueous compartments. Of the many possible potentials of liposomes their application in immunology is most significant. Recent studies have shown an adjuvant and a carrier effect of liposomes to a number of antigens. Liposomes used in these studies are generally multilamellar vesicles with the antigen encapsulated in the aqueous phase. Some antigens may also be associated with the lipid lamellae covalently or noncovalently. The adjuvant property of liposomes is greatly affected by the surface charge of the vesicle as well as the site of association of the antigen. The other factors which may have a role in immunopotentiation by liposomes are the size and structure of the vesicles, the lipid composition, route of administration and their surface sugars. In addition, liposomes may function as carriers to haptens and other antigens. In association with liposomes the nature of the immune response may be modulated. For a further enhancement of the adjuvant activity of liposomes use has been made of immunomodulators.  相似文献   

6.
The adjuvant activity of liposomes and immunostimulating peptidoglycan monomer (PGM) in different formulations has been studied in mice model using ovalbumin (OVA) as an antigen. PGM is a natural compound of bacterial origin with well-defined chemical structure: GlcNAc-MurNAc-l-Ala-d-isoGln-mesoDpm(εNH2)-d-Ala-d-Ala. It is a non-toxic, non-pyrogenic, and water-soluble immunostimulator. The aim of this study was to investigate the influence of different liposomal formulations of OVA, with or without PGM, on the production of total IgG, as well as of IgG1 and IgG2a subclasses of OVA-specific antibodies (as indicators of Th2 and Th1 type of immune response, respectively). CBA mice were immunized s.c. with OVA mixed with liposomes, OVA with PGM mixed with liposomes, OVA encapsulated into liposomes and OVA with PGM encapsulated into liposomes. Control groups were OVA in saline, OVA with PGM in saline, and OVA in CFA/IFA adjuvant formulation. The entrapment efficacy of OVA was monitored by HPLC method. The adjuvant activity of the mixture of OVA and empty liposomes, the mixture of OVA, PGM, and liposomes and PGM encapsulated with OVA into liposomes on production of total anti-OVA IgG was demonstrated. The mixture of PGM and liposomes exhibited additive immunostimulating effect on the production of antigen-specific IgGs. The analysis of IgG subclasses revealed that encapsulation of OVA into liposomes favors the stimulation of IgG2a antibodies, indicating the switch toward the Th1 type of immune response. When encapsulated into liposomes or mixed with liposomes, PGM induced a switch from Th1 to Th2 type of immune response. It could be concluded that appropriate formulations of antigen, PGM, and liposomes differently affect the humoral immune response and direct the switch in the type of immune response (Th1/Th2).  相似文献   

7.
Abstract

Introduction

Vaccine technology has fostered many promising immunologic strategies for disease prevention, especially vaccination with synthetic peptides and recombinant proteins. Such products, even if considered good candidates for vaccines, are often incomplete in that they may require the 'help' of an adjuvant to become immunogenic (1). However, an immunologist considering peptide epitopes for immunization, must in tandem carefully reflect on how the adjuvant directs the immune response. In our experience, while the expected response to an antigen has often been extensively characterized, less attention is given to adjuvant-immune system interactions beyond the desire to enhance the immune response. This is in part due to the lag in studies focusing on adjuvant-immune system interactions when compared to the immunizing antigens themselves, although the study of adjuvants has begun to receive increasing attention. The adjuvant effect on the immune response can be the determining factor in terms of the effector arm of the immune system recruited (e.g., cytoxoxic T lymphocytes, particular IgG subclass antibodies, etc.) (2-4).

Our laboratory has had a long-standing interest in the immune response to liposomal antigens, beginning with phospholipid antibodies (5). This interest has grown and our laboratories are currently participating in several vaccine trials in humans (6-9). This is in large part due to the effectiveness of liposomes containing lipid A in inducing strong antibody and cytotoxic lymphocyte responses to antigens, coupled with minimal or no adverse reactions (6, 10). Our understanding of the mechanisms by which liposomes containing lipid A exert such adjuvant effects is incomplete but is rapidly growing. This review endeavors to highlight some of the known interactions between liposomes containing lipid A and the macrophage that might be of interest to the vaccinologisl, with a particular focus on macrophage activation and the mechanisms by which liposomes containing lipid A cause this to occur.  相似文献   

8.
Abstract

Emulsification of liposomes with incomplete Freund's adjuvant, a water-in-oil emulsion, resulted in the formation of stable emulsions containing a large fraction of intact liposomes. Although some loss of liposome integrity and loss of emulsion stability did occur at certain concentrations of liposomes, based on the release of trapped glucose, it was determined that formulations of Freund's adjuvant containing liposomes could be produced that still retained a considerable liposomal permeability barrier for at least 7 days.  相似文献   

9.
The aim of this study is to develop the previous research on tetanus toxoid and improve the level of antibodies against tetanus and diphtheria toxoids using liposomes as adjuvant. The results show that negatively charged liposomes enhance the immune effects of the combination of the two vaccines.  相似文献   

10.
The use of liposomes as vaccine adjuvants has been investigated extensively over the last few decades. In particular, cationic liposomal adjuvants have drawn attention, with dimethyldioctadecylammonium (DDA) liposomes as a prominent candidate. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulators has arisen as a strategy in the development of novel adjuvant systems in recent years. One such adjuvant system is CAF01. In this review, we summarize the immunological properties making CAF01 a promising versatile adjuvant system, which was developed to mediate protection against tuberculosis (TB) but, in addition, has shown promising protective efficacy against other infectious diseases requiring different immunological profiles. Further, we describe the stabilization properties that make CAF01 suitable in vaccine formulation for the developing world, which in addition to vaccine efficacy, are important prerequisites for any novel TB vaccine to reach global implementation. The encouraging nonclinical data led to a preclinical vaccine toxicology study of the TB model vaccine, Ag85B-ESAT-6/CAF01, that concluded that CAF01 has a satisfactory safety profile to advance the vaccine into phase I clinical trials, which are scheduled to start in 2009.  相似文献   

11.
A mycolic acid-containing glycolipid, trehalose-2,3,6'-trimycolate (GaGM), derived from Gordona aurantiaca, an acid-fast bacteria closely related taxonomically to Mycobacterium, was investigated for its immune adjuvant activity in vitro. The liposomes containing GaGM showed strong mitogenic effects on murine spleen cells at the doses used (25-100 micrograms/ml), but not on T-cell-depleted spleen cells or macrophage-depleted spleen cells. These results suggest that the mitogenic property of liposomes containing GaGM differs from that of such as lipopolysaccharide, a B-cell mitogen and that its mitogenic effects depend on the presence of macrophages. In addition, liposomes containing GaGM augmented the mixed lymphocyte reaction (MLR) and in vitro induction of cytotoxic T-lymphocytes (CTLs) against allogeneic tumor cells. These results suggest that liposomes containing GaGM have immune adjuvant properties in vitro and the adjuvant activity may be related to such cytokines as interleukin-1 and -2.  相似文献   

12.
The adjuvant activity of liposomes and immunostimulating peptidoglycan monomer (PGM) in different formulations has been studied in mice model using ovalbumin (OVA) as an antigen. PGM is a natural compound of bacterial origin with well-defined chemical structure: GlcNAc-MurNAc-L-Ala-D-isoGln-mesoDpm(epsilonNH2)-D-Ala-D-Ala. It is a non-toxic, non-pyrogenic, and water-soluble immunostimulator. The aim of this study was to investigate the influence of different liposomal formulations of OVA, with or without PGM, on the production of total IgG, as well as of IgG1 and IgG2a subclasses of OVA-specific antibodies (as indicators of Th2 and Th1 type of immune response, respectively). CBA mice were immunized s.c. with OVA mixed with liposomes, OVA with PGM mixed with liposomes, OVA encapsulated into liposomes and OVA with PGM encapsulated into liposomes. Control groups were OVA in saline, OVA with PGM in saline, and OVA in CFA/IFA adjuvant formulation. The entrapment efficacy of OVA was monitored by HPLC method. The adjuvant activity of the mixture of OVA and empty liposomes, the mixture of OVA, PGM, and liposomes and PGM encapsulated with OVA into liposomes on production of total anti-OVA IgG was demonstrated. The mixture of PGM and liposomes exhibited additive immunostimulating effect on the production of antigen-specific IgGs. The analysis of IgG subclasses revealed that encapsulation of OVA into liposomes favors the stimulation of IgG2a antibodies, indicating the switch toward the Th1 type of immune response. When encapsulated into liposomes or mixed with liposomes, PGM induced a switch from Th1 to Th2 type of immune response. It could be concluded that appropriate formulations of antigen, PGM, and liposomes differently affect the humoral immune response and direct the switch in the type of immune response (Th1/Th2).  相似文献   

13.
Liposomes have been produced by injecting an ether solution of a mixture of lecithin and cholesterol into a diluted solution of prewarmed diphtheria and tetanus toxoids followed by elimination of the stream of ether vapour by vacuum.In a preliminary study, adjuvant effects of liposomes on the systemic and mucosal immune response have been studied. When a mixture of diphtheria toxoid (DT) and tetanus toxoid (TT) entrapped in liposomes were administered parenterally or orally in rabbit, a significant rise of specific antibodies against both toxoids was noticed. In monkeys receiving a mixture of DT and TT entrapped in liposomes orally, the antibody response after two and three ingestions of this product was mild but when liposomes containing toxoids were adsorbed with aluminium hydroxide in a similar experiment, a significant rise in the specific antibody response in monkey against both toxoids was recorded. Adult volunteers, similarly receiving a mixture of DT and TT, entrapped in liposomes and adsorbed with aluminium hydroxide have shown a significant rise in specific circulating antitoxins. In order to compare the efficacy of this technique of human oral immunization with the previous method, whereby a plant medicinal seed (LRS) was used as adjuvant in oral immunization of man, a second group of volunteers were simultaneously and similarly treated as suggested previously. The comparative results are discussed in the present report.  相似文献   

14.
The ability of several surface-active agents to stimulate the humoral immune response in mice against haptenated liposomes was tested. The surfactants were block copolymers of hydrophilic polyoxyethylene (POE) and hydrophobic polyoxypropylene (POP) that differed in m.w., percentage of POE, and mode of linkage of POP to POE. The liposomes were haptenated with tripeptide-enlarged dinitrophenyl coupled to phosphatidylethanolamine, which was incorporated into the liposomal membrane. Additional injection of mice with surfactant stimulated serum hemagglutination titers and splenic plaque-forming cell (PFC) numbers to varying extents. Block polymers with POP chains flanking a POE center, as well as polymers with POE chains flanking a POP center, displayed high adjuvant activity. These block polymers stimulated the antibody response in a dose-dependent manner. They stimulated the antibody response with both high and low antigen doses. Furthermore, the addition of one of these adjuvants (25R1) reduced the amount of carrier lipid required in the liposome in order to obtain an optimal antibody response. The surfactants, which displayed high adjuvant activity, did not interfere with liposome stability as measured with a liposome lysis assay. Moreover, in vitro preincubation of liposomes with a block polymer did not affect their immunogenicity. Optimal adjuvant activity was observed when both adjuvant and liposomes were administered by the same route. Simultaneous injection of both components, however, is not a prerequisite. Conclusively, it can be stated that nonionic block polymer surfactants are potent adjuvants for stimulation of the antibody response against haptenated liposomes.  相似文献   

15.
Nasal administration of Ags using a novel hybrid Ag delivery vehicle composed of envelope glycoproteins of Sendai virus on the surface of liposome membranes (fusogenic liposome) efficiently delivered Ags to Ag-sampling M cells in nasopharyngeal-associated lymphoreticular tissue. Additionally, fusogenic liposomes also effectively delivered the Ags into epithelial cells and macrophages in nasopharyngeal-associated lymphoreticular tissue and nasal passages. In vitro Ag presentation assays clearly showed that fusogenic liposomes effectively presented encapsulated Ags via the MHC class II-dependent pathway of epithelial cells as well as macrophages. Fusogenic liposomes also have an adjuvant activity against mucosal epithelial cells to enhance MHC class II expression. According to these high delivery and adjuvant activities of fusogenic liposomes, nasal immunization with OVA-encapsulated fusogenic liposomes induced high levels of OVA-specific CD4(+) Th1 and Th2 cell responses. Furthermore, Ag-specific CTL responses and Ab productions were also elicited at both mucosal and systemic sites by nasal immunization with Ag-encapsulated fusogenic liposomes. These results indicate that fusogenic liposome is a versatile and effective system for the stimulation of Ag-specific immune responses at both mucosal and systemic compartments.  相似文献   

16.
Abstract

Introduction

Ever since the liposome has been proposed as an antigen carrier or vaccine adjuvant to enhance immune responses of various vaccines (1), a great deal of effort has been made to understand the physical and chemical properties of the liposome membranes that modulate the potency of liposomal adjuvants [for review, see (2)]. While no generally consistent conclusion can be drawn for all vaccine antigens, the role of lipid fluidity in liposome adjuvanticity has been investigated extensively. Kinsky (3) showed that trinitrophenyl (TNP)-sensitized liposomes composed primarily of gelphased lipids [defined by a gel-to-liquid phase-transition temperature (Tc) higher than 37°C] were more potent in eliciting B cell response. In this study, TNP is a lipid membrane-bound antigen. However, membrane fluidity does not appear to play a role in adjuvanticity with a water-soluble antigen. Six et al. (4) showed, using the water-soluble adenovirus type 5 hexon, that liposomes made of gel-phased lipids – distearoyl phosphatidylcholines (PC) (Tc = 57°C) and dipalmitoyl PC (Tc = 41 °C) - produced similar adjuvant effects in responders compared to liposomes made of liquid-phased lipids – dimyristoyl PC (Tc = 23°C) and dioleoyl PC (Tc = -22°C). Other experimental results regarding membrane fluidity and the adjuvanticity of various lipid compositions and protein antigens (5-8) yielded conflicting conclusions. These inconsistent results may have arisen from the differences in the studied protein antigen and from the unique interaction between the antigen and lipid membrane. Overall, liposome adjuvant studies to date have concentrated on the role of the physical characteristics of liposome membranes in potentiating immune interactions and paid limited attention to the physiological constraint and immune recognition and interaction at the cellular and molecular levels. With the recent advances in our understanding of the cellular and molecular mechanisms of immune regulation, one can now rationally design strategies to deliver antigen and cytokines to selective sites or cells involved in immune potentiation. In the following sections, we will present our observations about such strategies for the delivery of antigens with antigen-presenting liposomes (APLs) targeted to macrophages and the use of liposomes to deliver cytokines for the enhancement of antigen-dependent T and B cell growth.  相似文献   

17.
We have previously reported that antigen coupled with liposomes induced antigen-specific and IgE-selective unresponsiveness in mice. This antigen preparation was investigated for application in a novel vaccine protocol to induce minimal IgE synthesis. In this study, ovalbumin (OVA)-liposome conjugates were made using liposomes of four different lipid components, including unsaturated carrier lipid and three different saturated carrier lipids, after which the induction of anti-OVA antibody production was investigated in mice. All of the OVA-liposome conjugates induced IgE-selective unresponsiveness. The membrane fluidity of liposomes, as measured by detecting changes in the fluorescence polarization of a 1,6-diphenyl-1,3,5-hexatriene (DPH) probe located in the bilayers, was significantly higher in liposomes consisting of unsaturated carrier lipids than those of the other liposomes consisting of saturated carrier lipids. The highest titer of anti-OVA IgG was observed in mice immunized with OVA-liposomes made using liposomes consisting of unsaturated carrier lipids. In addition, among these OVA-liposomes, the one possessing the longest carbon chain induced the lowest IgG antibody production. These results suggest that the membrane fluidity of liposomes might affect the adjuvant effect of liposomes but not the induction of IgE-selective unresponsiveness in immunizations with surface-linked liposomal antigens.  相似文献   

18.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   

19.
Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N'',N''-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases.  相似文献   

20.
One of the practical limitations with the use of liposomes for delivery of the pharmaceutical substances such as antigens is that liposomes are relatively unstable in storage. In order to extend the stability of liposome in storage without affecting their functional activity, solution-type liposomes were dehydrated to form a structurally intact dry liposomes. Comparative immunological evaluation was carried out for both dry and solution-type liposomes containing gag-V3 chimera, consequently it was found that dry liposomes elicited both humoral and cellular response as efficiently as solution-type liposomes did against the same gag-V3 antigen. Especially, long-term stability of the liposomes was remarkably enhanced by the dehydration made to liposomes without a significant change in its ability to elicit immune responsein vivo. These results indicate that dry pH-sensitive liposome may become an effective delivery and adjuvant system for general vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号