首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Protein-tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling and a novel therapeutic target for the treatment of type 2 diabetes, obesity, and other associated metabolic syndromes. Because PTP1B regulates multiple signal pathways and it can both enhance and antagonize a cellular event, it is important to establish the physiological relevance of PTP1B in these processes. In this study, we utilize potent and selective PTP1B inhibitors to delineate the role of PTP1B in integrin signaling. We show that down-regulation of PTP1B activity with small molecule inhibitors suppresses cell spreading and migration to fibronectin, increases Tyr(527) phosphorylation in Src, and decreases phosphorylation of FAK, p130(Cas), and ERK1/2. In addition, PTP1B "substrate-trapping" mutants bind Tyr(527)-phosphorylated Src and protect it from dephosphorylation by endogenous PTP1B. These results establish that PTP1B promotes integrin-mediated responses in fibroblasts by dephosphorylating the inhibitory pTyr(527) and thereby activating the Src kinase. We also show that PTP1B forms a complex with Src and p130(Cas), and that the proline-rich motif PPRPPK (residues 309-314) in PTP1B is essential for the complex formation. We suggest that the specificity of PTP1B for Src pTyr(527) is mediated by protein-protein interactions involving the docking protein p130(Cas) with both Src and PTP1B in addition to the interactions between the PTP1B active site and the pTyr(527) motif.  相似文献   

2.
Glutaredoxin (GRX) is a glutathione-disulfide oxidoreductase involved in various cellular functions, including the redox-dependent regulation of certain integral proteins. Here we demonstrated that overexpression of GRX suppressed the proliferation of myocardiac H9c2 cells treated with platelet-derived growth factor (PDGF)-BB. After stimulation with PDGF-BB, the phosphorylation of PDGF receptor (PDGFR) beta was suppressed in GRX gene-transfected cells, compared with controls. Conversely, the phosphorylation was enhanced by depletion of GRX by RNA interference. In this study we focused on the role of low molecular weight protein-tyrosine phosphatase (LMW-PTP) in the dephosphorylation of PDGFRbeta via a redox-dependent mechanism. We found that depletion of LMW-PTP using RNA interference enhanced the PDGF-BB-induced phosphorylation of PDGFRbeta, indicating that LMW-PTP works for PDGFRbeta. The enhancement of the phosphorylation of PDGFRbeta was well correlated with inactivation of LMW-PTP by cellular peroxide generated in the cells stimulated with PDGF-BB. In vitro, with hydrogen peroxide treatment, LMW-PTP showed decreased activity with the concomitant formation of dithiothreitol-reducible oligomers. GRX protected LMW-PTP from hydrogen peroxide-induced oxidation and inactivation in concert with glutathione, NADPH, and glutathione disulfide reductase. This strongly suggests that retention of activity of LMW-PTP by enhanced GRX expression suppresses the proliferation of cells treated with PDGF-BB via enhanced dephosphorylation of PDGFRbeta. Thus, GRX plays an important role in PDGF-BB-dependent cell proliferation by regulating the redox state of LMW-PTP.  相似文献   

3.
Wip1 phosphatase modulates ATM-dependent signaling pathways   总被引:3,自引:0,他引:3  
Deletion of Ppm1d, the gene encoding the Wip1 phosphatase, renders cells resistant to transformation and mice resistant to tumor development. Here, we report that deficiency of Wip1 resulted in activation of the ataxia-telangiectasia mutated (ATM) kinase. In turn, overexpression of Wip1 was sufficient to reduce activation of the ATM-dependent signaling cascade after DNA damage. Wip1 dephosphorylated ATM Ser1981, a site critical for ATM monomerization and activation, and was critical for resetting ATM phosphorylation as cells repaired damaged DNA. We propose that the Wip1 phosphatase is an integral component of an ATM-dependent signaling pathway.  相似文献   

4.
Rho GTPases are signal transduction effectors that control cell motility, cell attachment, and cell shape by the control of actin polymerization and tyrosine phosphorylation. To identify cellular targets regulated by Rho GTPases, we screened global protein responses to Rac1, Cdc42, and RhoA activation by two-dimensional gel electrophoresis and mass spectrometry. A total of 22 targets were identified of which 19 had never been previously linked to Rho GTPase pathways, providing novel insight into pathway function. One novel target of RhoA was protein-tyrosine phosphatase 1B (PTP1B), which catalyzes dephosphorylation of key signaling molecules in response to activation of diverse pathways. Subsequent analysis demonstrated that RhoA enhances post-translational modification of PTP1B, inactivates phosphotyrosine phosphatase activity, and up-regulates tyrosine phosphorylation of p130Cas, a key mediator of focal adhesion turnover and cell migration. Thus, protein profiling reveals a novel role for PTP1B as a mediator of RhoA-dependent phosphorylation of p130Cas.  相似文献   

5.
We investigated the cellular mechanism(s) of insulin resistance associated with non-insulin dependent diabetes mellitus (NIDDM) using skeletal muscles isolated from non-obese, insulin resistant type II diabetic Goto-Kakizaki (GK) rats, a well known genetic rat model for type II diabetic humans. Relative to non-diabetic control rats (WKY), insulin-stimulated insulin receptor (IR) autophosphorylation and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation were significantly inhibited in GK skeletal muscles. This may be due to increased dephosphorylation by a protein tyrosine phosphatase (PTPase). Therefore, we measured skeletal muscle total PTPase and PTPase 1B activities in the skeletal muscles isolated from control rats (WKY) and diabetic Goto-Kakizaki (GK) rats. PTPase activity was measured using a synthetic phosphopeptide, TRDIY(P)ETDY(P)Y(P)RK, as the substrate. Basal PTPase activity was 2-fold higher (P < 0.001) in skeletal muscle of GK rats when compared to WKY. Insulin infusion inhibited skeletal muscle PTPase activity in both control (26.20% of basal, P < 0.001) and GK (25.35% of basal, P < 0.001) rats. However, PTPase activity in skeletal muscle of insulin-stimulated GK rats was 200% higher than hormone-treated WKY controls (P < 0.001). Immunoprecipitation of PTPase 1B from skeletal muscle lysates and analysis of the enzyme activity in immunoprecipitates indicated that both basal and insulin-stimulated PTPase 1B activities were significantly higher (twofold, P < 0.001) in skeletal muscle of diabetic GK rats when compared to WKY controls. The increase in PTPase 1B activity in diabetic GK rats was associated with an increased expression of the PTPase 1B protein. We concluded that insulin resistance of GK rats is accompanied atleast by an abnormal regulation of PTPase 1B. Elevated PTPase 1B activity through enhanced tyrosine dephosphorylation of the insulin receptor and its substrates, may lead to impaired glucose tolerance and insulin resistance in GK rats.  相似文献   

6.
CD148 is a receptor-like protein-tyrosine phosphatase known to inhibit transduction of mitogenic signals in non-hematopoietic cells. Similarly, in the hematopoietic lineage, CD148 inhibited signal transduction downstream of T cell receptor. However, it also augmented immunoreceptor signaling in B cells and macrophages via dephosphorylating C-terminal tyrosine of Src family kinases (SFK). Accordingly, endogenous CD148 compensated for the loss of the main SFK activator CD45 in murine B cells and macrophages but not in T cells. Hypothetical explanations for the difference between T cells and other leukocyte lineages include the inability of CD148 to dephosphorylate a specific set of SFKs involved in T cell activation or the lack of CD148 expression during critical stages of T cell development. Here we describe striking differences in CD148 expression between human and murine thymocyte subsets, the only unifying feature being the absence of CD148 during the positive selection when the major developmental block occurs under CD45 deficiency. Moreover, we demonstrate that similar to CD45, CD148 has both activating and inhibitory effects on the SFKs involved in TCR signaling. However, in the absence of CD45, activating effects prevail, resulting in functional complementation of CD45 deficiency in human T cell lines. Importantly, this is independent of the tyrosines in the CD148 C-terminal tail, contradicting the recently proposed phosphotyrosine displacement model as a mechanism of SFK activation by CD148. Collectively, our data suggest that differential effects of CD148 in T cells and other leukocyte subsets cannot be explained by the CD148 inability to activate T cell SFKs but rather by its dual inhibitory/activatory function and specific expression pattern.  相似文献   

7.
Protein-tyrosine phosphatase 1B (PTP1B) is a ubiquitously expressed PTP that is anchored to the endoplasmic reticulum (ER). PTP1B dephosphorylates activated receptor tyrosine kinases after endocytosis, as they transit past the ER. However, PTP1B also can access some plasma membrane (PM)-bound substrates at points of cell-cell contact. To explore how PTP1B interacts with such substrates, we utilized quantitative cellular imaging approaches and mathematical modeling of protein mobility. We find that the ER network comes in close proximity to the PM at apparently specialized regions of cell-cell contact, enabling PTP1B to engage substrate(s) at these sites. Studies using PTP1B mutants show that the ER anchor plays an important role in restricting its interactions with PM substrates mainly to regions of cell-cell contact. In addition, treatment with PTP1B inhibitor leads to increased tyrosine phosphorylation of EphA2, a PTP1B substrate, specifically at regions of cell-cell contact. Collectively, our results identify PM-proximal sub-regions of the ER as important sites of cellular signaling regulation by PTP1B.  相似文献   

8.
Mocca B  Wang W 《Journal of bacteriology》2012,194(15):4059-4068
In mammalian cells, nitric oxide (NO·) is an important signal molecule with concentration-dependent and often controversial functions of promoting cell survival and inducing cell death. An inducible nitric oxide synthase (iNOS) in various mammalian cells produces higher levels of NO· from l-arginine upon infections to eliminate pathogens. In this study, we reveal novel pathogenic roles of NO· generated by bacteria in bacterium-host cell cocultures using Moraxella catarrhalis, a respiratory tract disease-causing bacterium, as a biological producer of NO·. We recently demonstrated that M. catarrhalis cells that express the nitrite reductase (AniA protein) can produce NO· by reducing nitrite. Our study suggests that, in the presence of pathophysiological levels of nitrite, this opportunistic pathogen hijacks host cell signaling and modulates host gene expression through its ability to produce NO· from nitrite. Bacterium-generated NO· significantly increases the secretion of tumor necrosis factor alpha (TNF-α) and modulates the expression of apoptotic proteins, therefore triggering host cell programmed death partially through TNF-α signaling. Furthermore, our study reveals that bacterium-generated NO· stalls host cell division and directly results in the death of dividing cells by reducing the levels of an essential regulator of cell division. This study provides unique insight into why NO· may exert more severe cytotoxic effects on fast growing cells, providing an important molecular basis for NO·-mediated pathogenesis in infections and possible therapeutic applications of NO·-releasing molecules in tumorigenesis. This study strongly suggests that bacterium-generated NO· can play important pathogenic roles during infections.  相似文献   

9.
Suppression of the expression of the heterotrimeric G-protein Galpha(i2) in vivo has been shown to provoke insulin resistance, whereas enhanced insulin signaling is observed when Galpha(i2) is overexpressed in vivo. The basis for Galpha(i2) regulation of insulin signaling was explored in transgenic mice with targeted expression of the GTPase-deficient, constitutively active Q205L Galpha(i2) in fat and skeletal muscle. Phosphorylation of insulin receptor and IRS-1 in response to insulin challenge in vivo was markedly amplified in fat and skeletal muscle expressing Q205L Galpha(i2). The expression and activity of the protein-tyrosine phosphatase 1B (PTP1B), but not protein-tyrosine phosphatases SHP-1, SHP-2, and LAR, were constitutively decreased in tissues expressing the Q205L Galpha(i2), providing a direct linkage between insulin signaling and Galpha(i2). The loss of PTP1B expression may explain, in part, the loss of PTP1B activity in the iQ205L transgenic mice. Activation of Galpha(i2) in mouse adipocytes with lysophosphatidic acid was shown to decrease PTP1B activity, whereas pertussis toxin inactivates Galpha(i2), blocks lysophosphatidic acid-stimulated inhibition of PTP1B activity, and blocks tonic suppression of PTP1B activity by Galpha(i2). Elevation of intracellular cAMP in fat cells is shown to increase PTP1B activity, whereas either depression of cAMP levels or direct activation of Galpha(i2) suppresses PTP1B. These data provide the first molecular basis for the interplay between Galpha(i2) and insulin signaling, i.e. activation of Galpha(i2) can suppress both the expression and activity of PTP1B in insulin-sensitive tissues.  相似文献   

10.
c-Src tyrosine kinase activity is elevated in several types of human cancer, and this has been attributed to elevated c-Src expression levels, increased c-Src specific activity, and activating mutations in c-Src. We have found a number of human breast cancer cell lines with elevated c-Src specific activity that also possess elevated phosphatase activity directed against the carboxyl-terminal negative regulatory domain of Src family kinases. To identify this phosphatase, cell extracts from MDA-MB-435S cells were chromatographed and the fractions were assayed for phosphatase activity. Four peaks of phosphatase activity directed against the nonspecific substrate poly(Glu/Tyr) were detected. One peak also dephosphorylated a peptide modeled against the c-Src carboxyl-terminal negative regulatory domain and intact human c-Src. Immunoblotting and immunodepletion experiments identified the phosphatase as protein-tyrosine phosphatase 1B (PTP1B). Examination of several human breast cancer cell lines with increased c-Src activity showed elevated levels of PTP1B protein relative to normal control breast cells. In vitro c-Src reactivation experiments confirmed the ability of PTP1B to dephosphorylate and activate c-Src. In vivo overexpression of PTP1B in 293 cells caused a 2-fold increase of endogenous c-Src kinase activity. Our findings indicate that PTP1B is the primary protein-tyrosine phosphatase capable of dephosphorylating c-Src in several human breast cancer cell lines and suggests a regulatory role for PTP1B in the control of c-Src kinase activity.  相似文献   

11.
12.
13.
Qu CK 《Cell research》2000,10(4):279-288
Cellular biological avtivities are tightly controlled by intracellular signaling processes initiated by extracellular signals.Protein tyrosine phosphatases,which remove phosphate groups from phosphorylated signaling molecules,play equally important tyrosine roles as protein tyrosine kinases in signal transduction.SHP-2 a cytoplasmic SH2 domain containing protein tyrosine phosphatase,is involved in the signaling pathways of a variety of growth factors and cytokines.Recent studies have clearly demonstrated that this phosphatase plays an important role in transducing signal relay from the cell surface to the nucleus,and is a critical intracellular regulator in mediating cell proliferation and differentiation.  相似文献   

14.
Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression.  相似文献   

15.
BackgroundElevated homocysteine is epidemiologically related to insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling. However, the effect of homocysteine on PTP1B remains unclear.MethodsS-homocysteinylated PTP1B was identified by LC-ESI-MS/MS. The ability of thioredoxin system to recover active PTP1B from S-homocysteinylated PTP1B was confirmed by RNA interference. To address the mechanism for homocysteine to affect PTP1B activity, we performed 5-IAF insertion, activity assays, Western blotting, co-immunoprecipitation and glucose uptake experiments.ResultsThe thiol-containing form of homocysteine (HcySH) suppressed phosphorylation of insulin receptor-β subunit, but enhanced PTP1B activity. This phenomenon was partially related to the fact that HcySH promoted PTP1B expression. Although the disulfide-bonded form of homocysteine (HSSH) modified PTP1B to form an inactive S-homocysteinylated PTP1B, HcySH-induced increase in the activities of cellular thioredoxin and thioredoxin reductase, components of thioredoxin system, could recover active PTP1B from S-homocysteinylated PTP1B. Thioredoxin system transferred electrons from NADPH to S-homocysteinylated PTP1B, regenerating active PTP1B in vitro and in hepatocytes. The actions of HcySH were also related with decrease in hepatic glucose uptake.ConclusionsThe effect of HcySH/HSSH on PTP1B activity depends, at least partially, on the ratio of active PTP1B and S-homocysteinylated PTP1B. High HcySH-induced an increase in thioredoxin system activity is beneficial to de-S-homocysteinylation and is good for PTP1B activity.General significanceOur data provide a novel insight into post-translational regulation of PTP1B, and expand the biological functions of thioredoxin system.  相似文献   

16.
We have used the two-electrode voltage clamp technique and the patch clamp technique to investigate the regulation of ROMK1 channels by protein-tyrosine phosphatase (PTP) and protein-tyrosine kinase (PTK) in oocytes coexpressing ROMK1 and cSrc. Western blot analysis detected the presence of the endogenous PTP-1D isoform in the oocytes. Addition of phenylarsine oxide (PAO), an inhibitor of PTP, reversibly reduced K(+) current by 55% in oocytes coinjected with ROMK1 and cSrc. In contrast, PAO had no significant effect on K(+) current in oocytes injected with ROMK1 alone. Moreover, application of herbimycin A, an inhibitor of PTK, increased K(+) current by 120% and completely abolished the effect of PAO in oocytes coexpressing ROMK1 and cSrc. The effects of herbimycin A and PAO were absent in oocytes expressing the ROMK1 mutant R1Y337A in which the tyrosine residue at position 337 was mutated to alanine. However, addition of exogenous cSrc had no significant effect on the activity of ROMK1 channels in inside-out patches. Moreover, the effect of PAO was completely abolished by treatment of oocytes with 20% sucrose and 250 microg/ml concanavalin A, agents that inhibit the endocytosis of ROMK1 channels. Furthermore, the effect of herbimycin A is absent in the oocytes pretreated with either colchicine, an inhibitor of microtubules, or taxol, an agent that freezes microtubules. We conclude that PTP and PTK play an important role in regulating ROMK1 channels. Inhibiting PTP increases the internalization of ROMK1 channels, whereas blocking PTK stimulates the insertion of ROMK1 channels.  相似文献   

17.
Macrophage metabolic pathways show changes in response to various external stimuli. Especially, increased lipopolysaccharide, an important bacterial component and Toll-like receptor 4 agonist, can induce activity in various macrophage metabolic pathways, including energy production and biosynthesis, as well as high immune responses due to increase in differentiated M1 macrophages. In this study, we confirmed that Lactobacillus paracasei (L. paracasei) KBL382, KBL384 and KBL385, isolated from the feces of healthy Koreans, can modulate various enzymes and membrane transporters related to glycolysis or macrophage polarization including hypoxia-inducible factor 1-alpha (HIF1A), inducible nitric oxide synthase (iNOS) and arginase in stimulated macrophages at the mRNA level, using the in vitro rodent bone‐marrow‐derived macrophage (BMDM) model. All L. paracasei exhibited significant down-regulatory effects on mRNAs for glycolysis-related enzymes, including lactate dehydrogenase A, solute carrier family 2 member 1, and triosephosphate isomerase. Moreover, L. paracasei treatment could lead to significant reductions in HIF1A or iNOS mRNA, and induced arginase mRNA in the BMDM model. Therefore, further extensive studies should be performed to support the application of L. paracasei, such as in probiotics or therapeutics, in controlling abnormal immune responses related to macrophage.  相似文献   

18.
19.
The non-receptor protein-tyrosine phosphatases (PTPs) 1B and T-cell phosphatase (TCPTP) have been implicated as negative regulators of multiple signaling pathways including receptor-tyrosine kinases. We have identified PTP1B and TCPTP as negative regulators of the hepatocyte growth factor receptor, the Met receptor-tyrosine kinase. In vivo, loss of PTP1B or TCPTP enhances hepatocyte growth factor-mediated phosphorylation of Met. Using substrate trapping mutants of PTP1B or TCPTP, we have demonstrated that both phosphatases interact with Met and that these interactions require phosphorylation of twin tyrosines (Tyr-1234/1235) in the activation loop of the Met kinase domain. Using confocal microscopy, we show that trapping mutants of both PTP1B and the endoplasmic reticulum-targeted TCPTP isoform, TC48, colocalize with Met and that activation of Met enables the nuclear-localized isoform of TCPTP, TC45, to exit the nucleus. Using small interfering RNA against PTP1B and TCPTP, we demonstrate that phosphorylation of Tyr-1234/1235 in the activation loop of the Met receptor is elevated in the absence of either PTP1B or TCPTP and further elevated upon loss of both phosphatases. This enhanced phosphorylation of Met corresponds to enhanced biological activity and cellular invasion. Our data demonstrate that PTP1B and TCPTP play distinct and non-redundant roles in the regulation of the Met receptor-tyrosine kinase.  相似文献   

20.
Integrin α1β1 is a collagen receptor that down-regulates collagen and reactive oxygen species (ROS) production, and mice lacking this receptor show increased ROS levels and exacerbated glomerular sclerosis following injury. Caveolin-1 (Cav-1) is a multifunctional protein that is tyrosine-phosphorylated in response to injury and has been implicated in ROS-mediated injury. Cav-1 interacts with integrins, and integrin α1β1 binds/activates T cell protein-tyrosine phosphatase (TCPTP), which is homologous to the tyrosine phosphatase PTP1B known to dephosphorylate Cav-1. In this study, we analyzed whether phosphorylated Cav-1 (pCav-1) is a substrate of TCPTP and if integrin α1β1 is essential for promoting TCPTP-mediated Cav-1 dephosphorylation. We found that Cav-1 phosphorylation is significantly higher in cells lacking integrin α1β1 at base line and following oxidative stress. Overexpression of TCPTP leads to reduced pCav-1 levels only in cells expressing integrin α1β1. Using solid phase binding assays, we demonstrated that 1) purified Cav-1 directly interacts with TCPTP and the integrin α1 subunit, 2) pCav-1 is a substrate of TCPTP, and 3) TCPTP-mediated Cav-1 dephosphorylation is highly increased by the addition of purified integrin α1β1 or an integrin α1 cytoplasmic peptide to which TCPTP has been shown to bind. Thus, our results demonstrate that pCav-1 is a new substrate of TCPTP and that integrin α1β1 acts as a negative regulator of Cav-1 phosphorylation by activating TCPTP. This could explain the protective function of integrin α1β1 in oxidative stress-mediated damage and why integrin α1-null mice are more susceptible to fibrosis following injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号