首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori is a Gram-negative bacterium that causes ulcer, atrophic gastritis, adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Moreover, an ongoing controversial role of this bacterium infection has been suggested in the etiopathogenesis of some extradigestive diseases. The humoral response to H. pylori during a natural infection can be used for diagnostic purposes and as a basis for vaccine development. Host–pathogen interactions may be investigated by means of immunoproteomics, which provides global information about relevant specific and nonspecific antigens, and thus might be suitable to identify novel vaccine candidates or serological markers of H. pylori infection as well as of different related diseases. In this review, we describe how several research groups used H. pylori proteomics combined with western blotting analysis, using sera from patients affected with different H. pylori-related pathologies, to investigate potential associations between host immune response and clinical outcomes of H. pylori infection, resulting in the rapid identification of novel, highly immunoreactive antigens.  相似文献   

2.
Helicobacter pylori, Gram-negative spiral-shaped bacteria, member of epsilon-Proteobacteria, colonizes the gastric mucosa of humans. H. pylori has been identified as the causative agent of chronic inflammation, chronic gastritis and peptic ulceration and is considered a risk factor for the development of mucosa-associated lymphoid tissue lymphoma and adenocarcinoma of the stomach. Although more than 50% of human population is infected with H. pylori only a subset develops disease. The completion of two H. pylori genome sequences revealed the enormous strain heterogeneity and permitted comparative proteome analysis. Immunoproteomics, a novel strategy combining standard proteomics with immunological screening, is currently method of choice for identification of new antigens of diagnostic and protective values. Highly specific antigens will be used as biomarkers of different pathology induced by H. pylori infection whereas novel highly immunogenic, conserved, abundant and surface-located proteins will facilitate efficient anti-Helicobacter vaccine construction.  相似文献   

3.
The current status of Helicobacter pylori vaccines: a review   总被引:5,自引:0,他引:5  
Kabir S 《Helicobacter》2007,12(2):89-102
  相似文献   

4.
应用生物信息学方法筛选幽门螺杆菌疫苗候选抗原   总被引:2,自引:1,他引:2  
目的:应用生物信息学分析方法筛选幽门螺杆菌新的疫苗候选抗原。方法:从TIGRCMR下载幽门螺杆菌26695和J99株全基因组序列,应用生物信息学SignalP、PredTMBB、LipoP、TMHMM、Phobius、PSORT-B和SubLoc等分析软件,筛选幽门螺杆菌新的外膜蛋白和分泌蛋白疫苗候选抗原。结果:从幽门螺杆菌26695株筛选得到54个编码β-桶型跨膜蛋白、脂蛋白或分泌表达蛋白的疫苗候选蛋白抗原,从幽门螺杆菌J99株得到61个呈现上述表达方式的疫苗候选蛋白抗原;且这2株细菌的疫苗候选蛋白呈现良好的交集状况,即有43个候选疫苗蛋白是相同的。结论:用生物信息学分析方法可以从全基因组范围内快速筛选到保守的分泌或表面暴露的疫苗候选抗原,为疫苗抗原的快速筛选与鉴定奠定了基础。  相似文献   

5.
Helicobacter pylori infections are thought to eventually lead to symptoms as a result of the long-lasting interactions between the bacterium and its host. Mechanisms that allow this bacterium to cause a life-long infection involve modulation of both the immune response and host cellular processes. Last year many novel findings that improve our knowledge on how H.?pylori virulence factors interact with the host were reported, but because of space limitations we can only discuss a limited number of these studies. Among those are studies on the genetic variation of genes encoding outer membrane proteins and the mimicry of host antigens, factors that alter host-cell metabolism and factors that modulate the host's immune response.  相似文献   

6.
Immunology of Helicobacter pylori infection.   总被引:6,自引:0,他引:6  
We have tried to answer several questions in this article, dealing with: ontogenesis of the immune response, presentation of H. pylori antigens to immune cells, systemic vs local immune response, cytokine Th1/Th2 configuration, the role of cytokines, especially represented during H. pylori infection, mimicry phenomena, extragastroduodenal sites and manifestations and finally, vaccine development. The new achievements in the vaccine field, also of Polish groups, were underlined.  相似文献   

7.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

8.
A mouse model of Helicobacter pylori infection was used to evaluate the vaccine antigen potential of the citrate synthase homologue protein purified from the H. pylori NCTC 11637 strain. Mice were immunised with the protein by intra-Peyer's patch immunisation. This route gives maximal intestinal immunisation and was used to screen oral vaccine candidate antigens without the added complication of simultaneously testing oral delivery systems. Two weeks post-immunisation mice were infected with Sydney strain H. pylori and 4 weeks after infection the mice were killed and the level of H. pylori infection in the stomach determined. Pre-immunisation with the 50/52-kDa protein led to a 84-91% reduction in H. pylori infection compared to unimmunised controls.  相似文献   

9.
The Gram negative bacterium Helicobacter pylori is a human pathogen which infects the gastric mucosa and causes an inflammatory process leading to gastritis, ulceration and cancer. A systematic, proteome based approach was chosen to detect candidate antigens of H. pylori for diagnosis, therapy and vaccine development and to investigate potential associations between specific immune responses and manifestations of disease. Sera from patients with active H. pylori infection (n = 24), a control group with unrelated gastric disorders (n = 12) and from patients with gastric cancer (n = 6) were collected and analyzed for the reactivity against proteins of the strain HP 26695 separated by two-dimensional electrophoresis. Overall, 310 antigenic protein species were recognized by H. pylori positive sera representing about 17% of all spots separated. Out of the 32 antigens most frequently recognized by H. pylori positive sera, nine were newly identified and 23 were confirmed from other studies. Three newly identified antigens which belong to the 150 most abundant protein species of H. pylori, were specifically recognized by H. pylori positive sera: the predicted coding region HP0231, serine protease HtrA (HP1019) and Cag3 (HP0522). Other antigens were recognized differently by sera from gastritis and ulcer patients, which may identify them as candidate indicators for clinical manifestations. The data from these immunoproteomic analyses are added to our public database (http://www.mpiib-berlin.mpg.de/2D-PAGE). This platform enables one to compile many protein profiles and to integrate data from other studies, an approach which will greatly assist the search for more immunogenic proteins for diagnostic assays and vaccine design.  相似文献   

10.
Based on the very high prevalence of diseases caused by Helicobacter pylori, particularly in the developing world, and the rapid emergence of antibiotic resistance among clinical isolates, there is a strong rationale for an effective vaccine against H. pylori. In this review we describe recent promising candidate vaccines and prophylactic or therapeutic immunization strategies for use against H. pylori, as well as studies to identify immune responses that are related to protection in experimental animals. We also describe identification of different types of immune responses that may be related to protection against symptoms based on comparisons of H. pylori-infected patients with duodenal ulcers or gastric cancer and asymptomatic carriers. We conclude that there is still a strong need to clarify the main protective immune mechanisms against H. pylori as well as to identify a cocktail of strong protective antigens, or recombinant bacterial strains that express such antigens, that could be administered by a regimen that gives rise to effective immune responses in humans.  相似文献   

11.
Helicobacter pylori colonizes the human gastric mucosa and is associated with specific gastric disease. Virulence factors, such as urease, the vacuolating toxin (VacA), the cytotoxin-associated antigen CagA or blood-group-antigen-binding adhesin (BabA), an adherence factor, might account for the development of different diseases. Vaccination trials exploiting the antigenic properties of some of these proteins have not been successful in preventing infection in humans. A more in-depth understanding of the immune response to H. pylori infection as well as additional information on suitable epitopes and adjuvants will be required before a successful vaccine can be developed.  相似文献   

12.
BACKGROUND: Helicobacter pylori is a curved microaerophilic Gram-negative bacterium considered as a risk factor for gastric cancer. The aim of this study was to find an association between burning sensations, acid taste, halitosis, and lingual hyperplasia with the effect of H. pylori on the mouth. MATERIALS AND METHODS: A total of 124 subjects with different gastric diseases were studied: 46 patients with burning, halitosis and lingual dorsum hyperplasia and 78 patients with other diseases. RESULTS: The detection of H. pylori in the oral cavity by histopathologic diagnosis and molecular biology was confirmed in 40/46 (87%) patients with burning, halitosis, and lingual hyperplasia, and in 2/78 (2.6%) subjects with other diseases. Chi2: 91.26 (p < .001) Mantel-Haenszel. CONCLUSION: This trial showed an association between H. pylori and burning, halitosis, and lingual hyperplasia, and further considered this bacterium a risk factor for gastric infection.  相似文献   

13.
Helicobacter pylori gastritis: a Th1 mediated disease?   总被引:3,自引:0,他引:3  
Helicobacter pylori is now considered to be the main cause for most stomach diseases including ulcer, MALT lymphoma, adenocarcinoma and gastritis. The infection with this bacterium is chronic despite a local and systemic immune response towards it. Among the cellular infiltrate that arises during H. pylori-mediated gastritis, there is a considerable frequency of CD4+ Th1 cells producing IFNgamma, but not of Th2 cells producing IL-4. Since IFNgamma may induce binding of H. pylori to gastric epithelial cells followed by apoptosis of these cells, one may speculate that H. pylori-mediated diseases are in part autoimmune diseases initiated by H. pylori-specific Th1 cells infiltrating the gastric mucosa. Recent support for this hypothesis comes from an animal model in which mice are infected with H. pylori and display strongly reduced gastritis in the absence of IFNgamma.  相似文献   

14.
Helicobacter pylori, T cells and cytokines: the "dangerous liaisons"   总被引:1,自引:0,他引:1  
Helicobacter pylori infection is the major cause of gastroduodenal pathologies, but only a minority of infected patients develop chronic and life threatening diseases, as peptic ulcer, gastric cancer, B-cell lymphoma, or autoimmune gastritis. The type of host immune response against H. pylori is crucial for the outcome of the infection. A predominant H. pylori-specific Th1 response, characterized by high IFN-gamma, TNF-alpha, and IL-12 production associates with peptic ulcer, whereas combined secretion of both Th1 and Th2 cytokines are present in uncomplicated gastritis. Gastric T cells from MALT lymphoma exhibit abnormal help for autologous B-cell proliferation and reduced perforin- and Fas-Fas ligand-mediated killing of B cells. In H. pylori-infected patients with autoimmune gastritis cytolytic T cells infiltrating the gastric mucosa cross-recognize different epitopes of H. pylori proteins and H+K+ ATPase autoantigen. These data suggest that peptic ulcer can be regarded as a Th1-driven immunopathological response to some H. pylori antigens, whereas deregulated and exhaustive H. pylori-induced T cell-dependent B-cell activation can support the onset of low-grade B-cell lymphoma. Alternatively, H. pylori infection may lead in some individuals to gastric autoimmunity via molecular mimicry.  相似文献   

15.
Helicobacter pylori has been proposed as a causative agent of gastric cancer. The aim of this study was to define serum antibodies response against different H. pylori antigens in patients with gastric cancer. Serum samples were collected from 115 Lithuanian patients with non-cardia gastric cancer and 110 age- and sex-matched controls without cancer. Heat-stable, low-molecular-mass, and outer membrane proteins were used as antigens to analyze serum IgG antibody response against H. pylori by enzyme-linked immunosorbent assay. Seroprevalence of H. pylori using low-molecular-mass antigen was significantly higher in gastric cancer patients, compared to controls (77% versus 57%, p<0.05). Significant differences in the prevalence of H. pylori infection between gastric cancer patients and controls were found in females using all three studied antigens: heat-stable (98% versus 84%, p<0.05), low-molecular-mass (88% versus 48%, p<0.05) and outer membrane proteins (78% versus 57%, p<0.05). In males, no significant differences were revealed between gastric cancer patients and controls. There may be other cofactors in addition to H. pylori that are important for the development of gastric cancer. H. pylori seems, however, to be a more important for development of gastric cancer in females than in males or males may have more confounding risk factors for gastric cancer than females.  相似文献   

16.
Helicobacter pylori is a widespread Gram-negative bacterium responsible for the onset of various gastric pathologies and cancers in humans. A familiar trait of H. pylori is the production of cell-surface lipopolysaccharides (LPSs; O-chain --> core --> lipid A) with O-chain structures analogous to some mammalian histo-blood-group antigens, those being the Lewis determinants (Lea, Leb, Lex, sialyl Lex, Ley) and blood groups A and linear B. Some of these LPS antigens have been implicated as autoimmune, adhesion, and colonization components of H. pylori pathogenic mechanisms. This article describes the chemical structures of LPSs from H. pylori isolated from subjects with no overt signs of disease. Experimental data from chemical- and spectroscopic-based studies unanimously showed that these H. pylori manufactured extended heptoglycans composed of 2- and 3-linked D-glycero-alpha-D-manno-heptopyranose units and did not express any blood-group O-antigen chains. The fact that another H. pylori isolate with a similar LPS structure was shown to be capable of colonizing mice indicates that H. pylori histo-blood-group structures are not an absolute prerequisite for colonization in the murine model also. The absence of O-chains with histo-blood groups may cause H. pylori to become inept in exciting an immune response. Additionally, the presence of elongated heptoglycans may impede exposure of disease-causing outer-membrane antigens. These factors may render such H. pylori incapable of creating exogenous contacts essential for pathogenesis of severe gastroduodenal diseases and suggest that histo-blood groups in the LPS may indeed play a role in inducing a more severe H. pylori pathology.  相似文献   

17.
BACKGROUND AND AIM: A group of the proinflammatory and chemotactic cytokines (chemokines) has been considered as an important factor in the pathomechanism of different bacterial diseases, among them the common Helicobacter pylori infection. Experimental results obtained with gastric biopsy samples of H. pylori positive patients, and with H. pylori infected tumor originated gastric cell lines indicated that these cytokines have essential roles in the development and maintenance of the immune response and inflammation of the gastric mucosa during H. pylori infection. Although the mRNA expression was shown in these biopsy samples and cell lines, it is not yet proved that the normal gastric mucosal epithelial cells themselves express these cytokines. The establishment of a gastric surface mucous cell line with non-tumor origin (GSM06), and the usage of Helicobacter felis as a model of the classic H. pylori infection gave us the possibility to check this question. MATERIALS AND METHODS: in this study GSM06 cells were infected with different numbers (10(5), 10(6), 10(7), 10(8), 10(9) bacterium/ml medium) of H. felis for two different time periods (2, 4 h). Cells treated with medium only were used as control. Then the mRNA expression of the following cytokines was measured by RT-PCR method in the GSM06 cells: proinflammatory cytokine IL1-beta, and chemokine RANTES, eotaxin, MCP-1, MIP1-alpha and MIP1-beta. RESULTS: we found that neither mRNA of the investigated cytokines was expressed constitutively, however the GSM06 cells expressed the mRNA of each cytokine during H. felis infection. CONCLUSION: our results prove that normal gastric surface mucous epithelial cells express immunologically active peptides during H. felis infection. We may suppose that the epithelial cells of the gastric mucosa contribute to the immune response and inflammation by expressing proinflammatory (IL1-beta) and chemotactic (RANTES, eotaxin, MCP-1, MIP1-alpha and beta) cytokines during H. pylori infection in human.  相似文献   

18.
Helicobacter pylori is a spiral-shaped, flagellated, microaerophilic Gram-negative bacterium that colonizes the gastric epithelium of humans. All persons infected with H. pylori have gastritis, and some will develop severe disease such as peptic ulcers or gastric cancer. A characteristic feature of this infection is the pronounced accumulation of phagocytes, particularly neutrophils, in the gastric mucosa. H. pylori thrives in a phagocyte-rich environment, and we describe here how this organism uses an array of novel virulence factors to manipulate chemotaxis, phagocytosis, membrane trafficking and the respiratory burst as a means to evade elimination by the innate immune response.  相似文献   

19.
Moran AP 《Carbohydrate research》2008,343(12):1952-1965
Helicobacter pylori is a prevalent bacterial, gastroduodenal pathogen of humans that can express Lewis (Le) and related antigens in the O-chains of its surface lipopolysaccharide. The O-chains of H. pylori are commonly composed of internal Le(x) units with terminal Le(x) or Le(y) units or, in some strains, with additional units of Le(a), Le(b), Le(c), sialyl-Le(x) and H-1 antigens, as well as blood groups A and B, thereby producing a mosaicism of antigenic units expressed. The genetic determination of the Le antigen biosynthetic pathways in H. pylori has been studied, and despite striking functional similarity, low sequence homology occurs between the bacterial and mammalian alpha(1,3/4)- and alpha(1,2)-fucosyltransferases. Factors affecting Le antigen expression in H. pylori, that can influence the biological impact of this molecular mimicry, include regulation of fucosyltransferase genes through slipped-strand mispairing, the activity and expression levels of the functional enzymes, the preferences of the expressed enzyme for distinctive acceptor molecules and the availability of activated sugar intermediates. Le mimicry was initially implicated in immune evasion and gastric adaptation by the bacterium, but more recent studies show a role in gastric colonization and bacterial adhesion with galectin-3 identified as the gastric receptor for polymeric Le(x) on the bacterium. From the host defence aspect, innate immune recognition of H. pylori by surfactant protein D is influenced by the extent of LPS fucosylation. Furthermore, Le antigen expression affects both the inflammatory response and T-cell polarization that develops after infection. Although controversial, evidence suggests that long-term H. pylori infection can induce autoreactive anti-Le antibodies cross-reacting with the gastric mucosa, in part leading to the development of gastric atrophy. Thus, Le antigen expression and fucosylation in H. pylori have multiple biological effects on pathogenesis and disease outcome.  相似文献   

20.
Background:  Helicobacter pylori infection is associated with severe gastrointestinal disease including cancer. It induces complex antibody responses that might vary depending on disease state but currently cannot be assessed adequately. The objective of this work was the development of a sensitive and specific H. pylori multiplex serology assay with high-throughput capability that allows simultaneous detection of antibodies to a protein array.
Methods:  Seventeen proteins of up to three H. pylori strains (26695, G27, 151), including CagA, VacA, UreA, Catalase, Omp, and GroEL, were recombinantly expressed as glutathione- S -transferase fusion proteins, affinity-purified, and used as antigens in a fluorescent bead-based antibody-binding assay. Reference sera (n   =   317) characterized by commercial assays (screening ELISA with Western blot confirmation) were used for validation.
Results:  H. pylori seropositivity by multiplex serology defined as reactivity with at least four proteins showed good agreement (kappa: 0.70) with commercial serologic assay classification, and a sensitivity of 89% and specificity of 82%. For individual antigens, agreement with Western blot was good for CagA (kappa: 0.77), moderate for UreA (kappa: 0.53), and weak for VacA (kappa: 0.12). Of the 13 proteins expressed from two strains, only VacA showed serologic strain differences. High antibody reactivity to CagA (Type I infection) was negatively associated with antibodies to GroEL, Cad, CagM, catalase, HcpC, NapA, and UreA, suggesting type-specific differences in protein expression patterns and/or immune response.
Conclusion:  With its high-throughput and simultaneous detection abilities, H. pylori multiplex serology appears suited as tool for large seroepidemiologic studies assessing H. pylori prevalence, antibody patterns, and associations with specific diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号