首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Cytochrome b5 induced flip-flop of phosphatidylethanolamine (PE) in sonicated vesicles prepared from a 9:1 mixture of phosphatidylcholine (PC) to phosphatidylethanolamine was determined as follows. First, vesicles having a nonequilibrium distribution of PE across the bilayer were prepared by amidinating the external amino groups with isethionyl acetimidate. Amidinated cytochrome b5 was then added, and after the protein was completely bound, the rate of appearance of fresh PE on the outer surface was determined by removing aliquots at timed intervals and titrating the external amino groups with trinitrobenzenesulfonic acid. The results show an initial rapid phase of flip-flop (especially in the presence of salt) followed by a very slow phase, at 25 degrees C. Similar results were obtained when cytochrome b5 was introduced into the amidinated vesicles by spontaneous transfer from PC donor vesicles. These results indicate that the accumulation of the transferable ("loose") form of cytochrome b5 on the outer surface of a vesicle causes a transient, global destabilization of the bilayer that is relieved by lipid flip-flop. We speculate that this mechanism may be a significant driving force for the transfer of amphipathic molecules across membranes.  相似文献   

2.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicle was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they was transferred to the nonspin-labeled acceptor vesicles. A lower transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles for a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

3.
A R Curran  R H Templer  P J Booth 《Biochemistry》1999,38(29):9328-9336
Three different lipid systems have been developed to investigate the effect of physicochemical forces within the lipid bilayer on the folding of the integral membrane protein bacteriorhodopsin. Each system consists of lipid vesicles containing two lipid species, one with phosphatidylcholine and the other with phosphatidylethanolamine headgroups, but the same hydrocarbon chains: either L-alpha-1, 2-dioleoyl, L-alpha-1,2-dipalmitoleoyl, or L-alpha-1,2-dimyristoyl. Increasing the mole fraction of the phosphatidylethanolamine lipid increases the desire of each monolayer leaflet in the bilayer to curve toward water. This increases the torque tension of such monolayers, when they are constrained to remain flat in the vesicle bilayer. Consequently, the lateral pressure in the hydrocarbon chain region increases, and we have used excimer fluorescence from pyrene-labeled phosphatidylcholine lipids to probe these pressure changes. We show that bacteriorhodopsin regenerates to about 95% yield in vesicles of 100% phosphatidylcholine. The regeneration yield decreases as the mole fraction of the corresponding phosphatidylethanolamine component is increased. The decrease in yield correlates with the increase in lateral pressure which the lipid chains exert on the refolding protein. We suggest that the increase in lipid chain pressure either hinders insertion of the denatured state of bacterioopsin into the bilayer or slows a folding step within the bilayer, to the extent that an intermediate involved in bacteriorhodopsin regeneration is effectively trapped.  相似文献   

4.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicles was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they were transferred to the nonspin-labeled acceptor vesicles. A lowe transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles of a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

5.
Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes   总被引:2,自引:0,他引:2  
Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, and fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing of internal aqueous contents of liposomes, utilizing the quenching of aminonaphthalene-3,6,8-trisulfonic acid (ANTS) by N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated in two separate populations of vesicles, (ii) a resonance energy transfer assay for the dilution of fluorescent phospholipids from labeled to unlabeled liposomes, (iii) irreversible changes in turbidity, and (iv) quick-freezing freeze-fracture electron microscopy. Destabilization is followed by the fluorescence increase caused by the leakage of coencapsulated ANTS/DPX or of calcein. Ca2+ and Mg2+ also induce fusion of these vesicles at 3 and 4 mM, respectively. The threshold for fusion is at a higher pH in the presence of low (subfusogenic) concentrations of these divalent cations. Vesicles composed of phosphatidylserine/phosphatidylethanolamine or of oleic acid/phosphatidylcholine (3:7 mole ratio) do not aggregate, destabilize, or fuse in the pH range 7-4, indicating that phosphatidylserine and phosphatidylcholine cannot be substituted for oleic acid and phosphatidylethanolamine, respectively, for proton-induced membrane fusion. Freeze-fracture replicas of oleic acid/phosphatidylethanolamine liposomes frozen within 1 s of stimulation with pH 5.3 display larger vesicles and vesicles undergoing fusion, with membrane ridges and areas of bilayer continuity between them. The construction of pH-sensitive liposomes is useful as a model for studying the molecular requirements for proton-induced membrane fusion in biological systems and for the cytoplasmic delivery of macromolecules.  相似文献   

6.
The effects of lipid composition on the relaxivity of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) entrapped in lipid vesicles has been examined for vesicles of different sizes composed of egg phosphatidylcholine and cholesterol in various molar ratios, as well as the stability of those same vesicles in human serum at 37 degrees C. It is found that the incorporation of cholesterol decreases the apparent relaxivity of the entrapped Gd-DTPA, concomitant with an increase in vesicle stability in serum. Cholesterol has little effect on relaxivity when incorporated at ratios up to 20 mole percent, but has an increasing effect at higher mole percentages. These results correlate with the known effects of cholesterol on the osmotic water permeability coefficients of various model membrane systems and suggest that it is the water flux across the vesicle bilayer that is limiting to the T1 relaxivity of the entrapped Gd-DTPA. The incorporation of up to 20 mole percent cholesterol has little effect on the stability of the vesicles in serum, whereas vesicles containing more than 20 mole percent cholesterol show greater increases in stability. It was also found that the stability of vesicles depends upon the size of the vesicles; smaller vesicles are less stable in human serum at 37 degrees C than larger vesicles.  相似文献   

7.
The transverse distribution of phospholipids in the membranes of subfractions of the Golgi complex was investigated by using phospholipase C and 2,4,6-trinitrobenzenesulphonic acid as probes. In trans-enriched Golgi membranes, 26% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate or for hydrolysis by phospholipase C, and 72% of the phosphatidylcholine is hydrolysed by phospholipase C. In cis-enriched Golgi membranes, 45% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate and for hydrolysis by phospholipase C, and 95% of the phosphatidylcholine is hydrolysed by phospholipase C. Under the conditions used with either probe the contents of the Golgi vesicles labelled with either [3H]palmitic acid or [14C]leucine were retained. Galactosyltransferase activity of the membrane vesicles was partially inhibited by the experimental procedures used to investigate the transverse distribution of phospholipids. However, the residual activity was latent, suggesting that the vesicles remained closed. Trinitrobenzenesulphonic acid caused no detectable morphological change in either Golgi fraction. Phospholipase C treatment caused morphological changes, including fusion of vesicles and the appearance of 'signet-ring' profiles in some vesicles; however, the vesicles remained closed and the bilayer was retained. It appears, therefore, that neither probe causes major disruption of the Golgi vesicles nor gains access to the inner surface of the membrane bilayer. These observations suggest that phospholipids have a transverse asymmetry in Golgi membranes, that this distribution differs in trans and cis membranes, and that the phospholipid structure of Golgi membranes is inconsistent with a simple flow of membrane bilayer from endoplasmic reticulum to Golgi membranes to plasma membrane.  相似文献   

8.
In the present study, 2,2,6,6-tetramethylpiperidinooxy nitroxide (TEMPO) has been applied successfully to discriminate between glucosylceramide in the outer and inner leaflets of closed membrane bilayers. The nitroxyl radicals TEMPO and carboxy-TEMPO, once oxidized to nitrosonium ions, are capable of oxidizing residues that contain primary hydroxyl and amino groups. When applied to radiolabeled glucosylceramide in liposomes, oxidation with TEMPO led to an oxidized product that was easily separated from the original lipid by thin-layer chromatography, and that was identified by mass spectrometric analysis as the corresponding acid glucuronylceramide. To test whether oxidation was confined to the external leaflet, TEMPO was applied to large unilamellar vesicles (LUVs) consisting of egg phosphatidylcholine- egg phosphatidylethanolamine;-cholesterol 55:5:40 (mol/mol). TEMPO oxidized most radiolabeled phosphatidylethanolamine, whereas carboxy-TEMPO oxidized only half. Hydrolysis by phospholipase A(2) confirmed that 50% of the phosphatidylethanolamine was accessible in the external bilayer leaflet, suggesting that TEMPO penetrated the lipid bilayer and carboxy-TEMPO did not. When applied to LUVs containing <1 mol% radiolabeled glucosylceramide or short-chain C(6)-glucosylceramide, carboxy-TEMPO oxidized half the glucosylceramide. However, if surface C(6)-glucosylceramide was first depleted by bovine serum albumin (BSA) (extracting 49 +/- 1%), 94% of the remaining C(6)-glucosylceramide was resistant to oxidation. Carboxy-TEMPO oxidized glucosylceramide on the surface of LUVs without affecting inner leaflet glucosylceramide. At pH 9.5 and at 0 degrees C, the reaction reached completion by 20 min.  相似文献   

9.
R A Demel  F Paltauf  H Hauser 《Biochemistry》1987,26(26):8659-8665
The monolayer properties and thermal behavior of different phosphatidylserines are presented. At neutral pH and 22 degrees C, saturated phosphatidylserines form condensed monolayers while unsaturated phosphatidylserines form liquid-expanded films. Under similar conditions, dimyristoylphosphatidylserine undergoes a transition from the liquid-expanded to the condensed state. At pH 4 and 22 degrees C, the surface pressure-area isotherms are shifted to smaller areas relative to the monolayers recorded at neutral pH. The condensation observed at pH 4 is close to that produced at pH 7.4 by the addition of 10 mM CaCl2. As regards the molecular packing in monolayers and the thermal behavior, 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS) and its ether analogue are similar, albeit not identical. Below 30 mN/m, monolayers of the ether analogue are even more condensed than those of DPPS. The order-disorder transition of the ether analogue occurs usually at higher temperatures than that of the diacyl compound. Sonicated phosphatidylserine dispersions consisting of small unilamellar vesicles show anomalous thermal properties compared to sonicated phosphatidylcholine dispersions. They exhibit sharp order-disorder transitions at similar or even slightly elevated temperatures compared to unsonicated phosphatidylserine dispersions. This anomaly is explained in terms of a pH gradient across the bilayer membrane of the small unilamellar phosphatidylserine vesicle. The internal surface pH is more acidic than the external pH, leading to some protonation of phosphatidylserine molecules. This in turn leads to a condensation of phosphatidylserine molecules on the inner bilayer surface. Such a gradient is proposed to be responsible for the thermodynamic stability of highly curved negatively charged bilayer vesicles.  相似文献   

10.
F R Taylor  J E Cronan 《Biochemistry》1979,18(15):3292-3300
The cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes the methylenation of the unsaturated moieties of phospholipids in a phospholipid bilayer. The methylene donor is S-adenosyl-L-methionine. The enzyme is loosely associated with the inner membrane of the bacterium and binds to and is stabilized by phospholipid vesicles. The enzyme has been purified over 500-fold by flotation with phospholipid vesicles and appears to be a monomeric protein having a molecular weight of about 90 000. The enzyme binds only to vesicles of phospholipids which contain either unsaturated or cyclopropane fatty acid moieties. CFA synthase is active on phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin, the major phospholipids of E. coli, and also has some activity on phosphatidylcholine. The enzyme is equally active on phospholipid vesicles in the ordered or the disordered states of the lipid phase transition. Studies with a reagent that reacts only with the phosphatidylethanolamine molecules of the outer leaflet of a phospholipid bilayer indicate that CFA synthase reacts with phosphatidylethanolamine molecules of both the outer and the inner leaflets of phospholipid vesicles.  相似文献   

11.
The influence of membrane pH gradients on the transbilayer distribution of some common phospholipids has been investigated. We demonstrate that the transbilayer equilibrium of the acidic phospholipids egg phosphatidylglycerol (EPG) and egg phosphatidic acid (EPA) can be manipulated by membrane proton gradients, whereas phosphatidylethanolamine, a zwitterionic phospholipid, remains equally distributed between the inner and outer monolayers of large unilamellar vesicles (LUVs). Asymmetry of EPG is examined in detail and demonstrated by employing three independent techniques: ion-exchange chromatography, 13C NMR, and periodic acid oxidation of the (exterior) EPG headgroup. In the absence of a transmembrane pH gradient (delta pH) EPG is equally distributed between the outer and inner monolayers of LUVs. When vesicles composed of either egg phosphatidylcholine (EPC) or DOPC together with 5 mol % EPG are prepared with a transmembrane delta pH (inside basic, outside acidic), EPG equilibrates across the bilayer until 80-90% of the EPG is located in the inner monolayer. Reversing the pH gradient (inside acidic, outside basic) results in the opposite asymmetry. The rate at which EPG equilibrates across the membrane is temperature dependent. These observations are consistent with a mechanism in which the protonated (neutral) species of EPG is able to traverse the bilayer. Under these circumstances EPG would be expected to equilibrate across the bilayer in a manner that reflects the transmembrane proton gradient. A similar mechanism has been demonstrated to apply to simple lipids that exhibit weak acid or base characteristics [Hope, M. J., & Cullis, P. R. (1987) J. Biol. Chem 262, 4360-4366]  相似文献   

12.
Cholesterol sulphate is a potent stabilizer of membrane bilayer structure in both dielaidoylphosphatidylethanolamine and egg phosphatidylethanolamine model membranes, however, the addition of calcium abolishes this bilayer stabilization. Calcium also induces fusion and leakage of egg phosphatidylethanolamine large unilamellar vesicles containing cholesterol sulphate, but has no effect on fusion or leakage of egg phosphatidylcholine large unilamellar vesicles containing cholesterol sulphate. With egg phosphatidylethanoiamine liposomes, the initial rate, and extent of fusion, at constant calcium concentration, vary inversely with the mol percentage of cholesterol sulphate present in the vesicle membrane. The interaction of calcium and cholesterol sulphate, which causes membrane destabilization and fusion in phosphatidylethanolamine containing model systems, may play a role in the acrosome reaction in human sperm.  相似文献   

13.
Large vesicles (5-10-micron in diameter) were formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera and digital image processor. When such vesicles contained a fluorescent phosphatidic acid (PA) and were exposed to 2 mM CaCl2 or 0.5 mM PrCl3, it was possible to visualize PA-enriched domains within the vesicles. Calcium-induced domain formation was reversible in the presence of 4 mM EGTA. Vesicles were formed containing fluorescent PA on either the inner or outer leaflet of the bilayer and the patching and dissolution of patching were studied under conditions where calcium was present on the outside of the vesicle and where calcium was distributed across the bilayer. In addition, vesicles were formed with two different fluorescent PA's, one on the inner leaflet and a different one on the outer leaflet of the bilayer. The results of the experiments show that in vesicles formed primarily with naturally occurring phospholipids such as egg phosphatidylcholine or brain phosphatidylethanolamine, there was no coordinate action of the two leaflets of the bilayer. An exception to this was found, however, if the vesicles were formed in the presence of primarily dioleoyl phospholipids (greater than 95 mol %). In these vesicles there was a coordinate or coupled response to calcium by the two leaflets of the bilayer. In most cases, however, the two leaflets of the bilayer showed independent or uncoupled domain formation.  相似文献   

14.
Ca2+-induced phase separation in phosphatidylserine/phosphatidylethanolamine and phosphatidylserine/phosphatidylethanolamine/phosphatidylcholine model membranes was studied using spin-labeled phosphatidylethanolamine and phosphatidylcholine and compared with that in phosphatidylserine/phosphatidylcholine model membranes studied previously. The phosphatidylethanolamine-containing membranes behaved in qualitatively the same way as did phosphatidylserine/phosphatidylcholine model membranes. There were some quantitative differences between them. The degree of phase separation was higher in the phosphatidylethanolamine-containing membranes. For example, the degree of phase separation in phosphatidylserine/phosphatidylethanolamine membranes containing various mole fractions of phosphatidylserine was 94--100% at 23 degrees C and 84--88% at 40 degrees C, while the corresponding value for phosphatidylserine/phosphatidylcholine membranes was 74--85% at 23 degrees C and 61--79% at 40 degrees C. Ca2+ concentration required for the phase separation was lower for phosphatidylserine/phosphatidylethanolamine than that for phosphatidylserine/phosphatidylcholine membranes; concentration to cause a half-maximal phase separation was 1.4 . 10(-7) M for phosphatidylserine-phosphatidylethanolamine and 1.2 . 10(-6) M for phosphatidylserine/phosphatidylcholine membranes. The phase diagram of phosphatidylserine/phosphatidylethanolamine membranes in the presence of Ca2+ was also qualitatively the same as that of phosphatidylserine/phosphatidylcholine except for the different phase transition temperatures of phosphatidylethanolamine (17 degrees C) and phosphatidylcholine (-15 degrees C). These differences were explained in terms of a greater tendency for phosphatidylethanolamine, compared to phosphatidylcholine, to form its own fluid phase separated from the Ca2+-chelated solid-phase phosphatidylserine domain.  相似文献   

15.
J S Hah  S W Hui  C Y Jung 《Biochemistry》1983,22(20):4763-4769
Proteoliposomes were reconstituted from a Triton extract of human erythrocyte membrane proteins and a mixture of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of varying ratios. With mixtures of egg PC and soybean PE, the protein/lipid ratio of the reconstituted vesicles was maximal at 25% PC and 75% PE, the composition which is known to have a maximum bilayer disruption (highest occurrence of lipidic particles seen by freeze-fracture electron microscopy). With mixtures of 1-palmitoyl-2-oleoyl-PC and dilinoleoyl-PE, which gave vesicles with few isolated lipidic particles at room temperature, the effect was less pronounced. The specific activity of the cytochalasin B (CB) binding protein in the reconstituted vesicles, on the other hand, was increased monotonically up to severalfold as the PC content was increased in the egg PC/soybean PE mixture. A similar increase was observed when soybean PE was partially substituted by dimyristoyl-PC, cholesterol, or transphosphatidylated PE from egg PC. These findings indicate that preexisting defects in the lipid bilayer promote protein incorporation into the bilayer during reconstitution whereas reduction of the bilayer fluidity facilitates the CB binding activity in the reconstituted vesicles.  相似文献   

16.
A method has been developed for the selective determination of the fatty acid side chain distribution associated with the amino containing phospholipids located in the inner and outer surfaces of membranes. Using sonicated phosphatidylethanolamine/phosphatidylcholine vesicles as a model, the analysis consists of selective labeling of the outer surface amino groups with the membrane impermeable reagent 2,4,6-trinitrobenzenesulfonic acid. Outer and inner surface phosphatidylethanolamine fractions are separated by thin-layer chromatography. Analysis of methyl esters derived from these two fractions, by gas-liquid chromatography, yields the fatty acid side chain distribution. Our results show that there is no mol fraction dependence of the incorporation of any specific fatty acid side chains of egg yolk phosphatidylethanolamine into the vesicle or any preferential distribution of these side chains in the inner or outer vesicle surface. The surface distribution of the egg yolk phosphatidylethanolamine molecules in these vesicles appears to be determined by the head group packing requirements and not the fatty acid side chain composition.  相似文献   

17.
A method has been developed for the selective determination of the fatty acid side chain distribution associated with the amino containing phospholipids located in the inner and outer surfaces of membranes. Using sonicated phosphatidylethanolamine/phosphatidylcholine vesicles as a model, the analysis consists of selective labeling of the outer surface amino groups with the membrane impermeable reagent 2,4,6-trinitrobenzenesulfonic acid. Outer and inner surface phosphatidylethanolamine fractions are separated by thin-layer chromatography. Analysis of methyl esters derived from these two fractions, by gas-liquid chromatography, yields the fatty acid side chain distribution. Our results show that there is no mol fraction dependence of the incorporation of any specific fatty acid side chains of egg yolk phosphatidylethanolamine into the vesicle or any preferential distribution of these side chains in the inner or outer vesicle surface. The surface distribution of the egg yolk phosphatidylethanolamine molecules in these vesicles appears to be determined by the head group packing requirements and not the fatty acid side chain composition.  相似文献   

18.
The distribution of cholesterol between vesicles of different lipid composition at equilibrium has been determined. Small, sonicated unilamellar vesicles and large unilamellar vesicles were incubated at a defined temperature, and aliquots were then obtained at selected times for analysis. Inclusion of a small amount of phosphatidylserine or phosphatidylinositol in the membrane does not appreciably affect the distribution of cholesterol at equilibrium by these measurements. A membrane in the gel state is a poor acceptor of cholesterol. The length of the hydrocarbon chain on the phospholipid may also play a role. Bovine brain sphingomyelin dramatically slows the kinetics of cholesterol transfer, and the equilibrium distribution of cholesterol among vesicles containing sphingomyelin is therefore not observable in these experiments. Data obtained with vesicles containing phosphatidylethanolamine indicate a preference of cholesterol for vesicles composed of phosphatidylcholine compared to vesicles consisting primarily of phosphatidylethanolamine, at equilibrium. Experiments with a chaotropic agent indicate that the nature of the surface of the phosphatidylethanolamine bilayer, and its hydration, are important factors in the distribution of cholesterol among membranes in which phosphatidylethanolamine is present. These data suggest that membrane lipid content may play a role in the distribution of cholesterol among the membranes of a cell.  相似文献   

19.
P J Sizer  A Miller  A Watts 《Biochemistry》1987,26(16):5106-5113
The integral membrane proteins of influenza virus, a hemagglutinin and a neuraminidase, have been incorporated into liposomes composed of either phosphatidylcholine or a mixture of phosphatidylcholine and phosphatidylethanolamine (2:1 w/w) using detergent dialysis. The virus spike glycoproteins for reconstitution were selectively solubilized by using cetyltrimethylammonium bromide to leave a "core particle", which lacked a lipid bilayer but possessed quaternary structure as observed by electron microscopy. The viral spike proteins were combined with exogenous phospholipid in excess sodium cholate followed by exhaustive dialysis for 150 h. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that only the viral glycoproteins were associated with all the complexes formed. The level of sodium cholate remaining after dialysis was shown to be reduced to less than 1 molecule per 80 protein molecules. Viral proteins reconstituted into dimyristoylphosphatidylcholine liposomes were shown to have retained hemagglutination, low-pH-dependent hemolysis, and neuraminidase activities and were associated with a lipid bilayer in two types of complexes with average lipid to protein mole ratios after sucrose density gradient purification of either 590:1 or 970:1. The bilayer vesicles formed were of similar sizes and were shown by negative-stain electron microscopy to be 150-300 nm in diameter with well-defined spikes on their surface. Reconstituted liposomes of dimyristoylphosphatidylcholine were found to be unstable with respect to their trapped volume and therefore were unsuitable for fusion studies, unlike complexes formed with phosphatidylcholine or a mixture of phosphatidylcholine/phosphatidylethanolamine derived from hen eggs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A J Schroit  J W Madsen 《Biochemistry》1983,22(15):3617-3623
An efficient method for the synthesis and purification of a variety of iodinated phospholipid analogues is described. 1-Acyl-2-[[[3-(3-[125I]iodo-4-hydroxyphenyl)- propionyl]amino]caproyl]phosphatidylcholine (125I-PC) was prepared by alkylation of 1-acyl-2-(aminocaproyl)phosphatidylcholine with monoiodinated Bolton-Hunter reagent. 125I-Labeled phosphatidic acid, phosphatidylethanolamine, and phosphatidylserine were produced from 125I-PC by phospholipase D catalyzed base exchange in the presence of ethanol-amine or L-serine. All of these lipid analogues transferred readily from donor vesicles into recipient membranes. When an excess of acceptor vesicles was mixed with a population of donor vesicles containing the iodinated analogues, approximately 50% of the 125I-labeled lipids transferred to the acceptor vesicle population. In addition, under appropriate incubation conditions, these lipids were observed to transfer from vesicles to mammalian cells. Autoradiographic analysis of 125I-labeled lipids extracted from the cells after incubation with vesicles at 2 degrees C for 60 min revealed that a large proportion of the 125I-labeled phosphatidic acid was metabolized to 125I-labeled diglyceride and 125I-labeled phosphatidylcholine, whereas no metabolism of exogenously supplied 125I-labeled phosphatidylethanolamine or 125I-labeled phosphatidylcholine could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号