首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of glutamate receptors in the monkey subthalamic nucleus was studied using affinity purified polyclonal antibodies to GluR1, phosphorylated GluR1, GluR2/3, NMDAR1, mGluR1a and mGluR5. Intense staining for both the unphosphorylated and the phosphorylated forms of the AMPA receptor subunit GluR1 was observed in the cell bodies and proximal dendrites of neurons in this nucleus. In comparison to GluR1, less intense staining for GluR2/3 was observed in the cell bodies and processes. NMDAR1 immunoreactivity was present in cell bodies and large numbers of small diameter dendrites. Light staining was observed in cell bodies with mGluR1a and no staining was observed on cell bodies with mGluR5. The neuropil, however, contained many processes that were labeled for mGluR1a or mGluR5. Electron microscopy showed that label was present in cytoplasmic locations in cell bodies and dendrites, in addition to components of the synaptic region, in sections stained for GluR1, GluR2/3 and NMDAR1. In contrast, very lightly labeled or unlabeled cell bodies but labeled dendrites and axon terminals, was observed in sections stained for mGluR1a and mGluR5. In addition to neural processes, occasional astrocytic processes were also labeled for mGluR5. Of the immunogold particles that were associated with components of the synaptic region, label for ionotropic glutamate receptors was mostly present on postsynaptic densities, whilst that for metabotropic glutamate receptors was mostly present in a perisynaptic location. The ratio of GluR1/GluR2 messenger RNAs has been reported to increase in the aged hippocampus (PAGLIUSI, S. R., GERRARD, P., ABDALLAH, M., TALABOT, D. & CATSICAS, S. (1994) Neuroscience 61, 429–433.), and it is possible that a similar change in the ratio of GluR1 and GluR2 may occur in neurons of the subthalamic nucleus with age. It is postulated that this could result an increase in calcium permeability via AMPA receptors, and an enhancement of excitatory transmission in this nucleus.  相似文献   

2.
Cratty MS  Birkle DL 《Peptides》1999,20(1):93-100
Corticotropin-releasing factor (CRF) plays an important role in the activation of centrally mediated responses to stress. The amygdala, a limbic structure involved in the stress response, has a significant number of CRF cell bodies and CRF receptors. Activation of glutamatergic projections to the amygdala has been implicated in the stress response. Few studies have evaluated neurotransmitter-stimulated CRF release in the amygdala. We measured the effects of glutamate (0.1-1000 microM) and N-methyl-D-aspartate (NMDA, 0.1-1000 microM) on CRF release from the amygdala using primary neuronal cultures from embryonic rat brains (E18-19). Experiments were performed after the cultures grew for 17-20 days. CRF was measured using radioimmunoassay. The excitatory amino acid neurotransmitters, glutamate and NMDA, stimulated CRF release in a concentration-dependent manner. The apparent EC50 values for glutamate and NMDA were 17.5 microM and 12 microM, respectively. Consistent with a NMDA receptor-driven event, glutamate-stimulated CRF release was blocked by the NMDA antagonist, 2-amino-5-phosphonovaleric acid (AP-5, 1-100 microM) and antagonized by the addition of 1.2 mM MgCl2 to the incubation medium. These results implicate an inhibition of CRF release in the amygdala as a possible mechanism for the reported anxiolytic effects of NMDA antagonists.  相似文献   

3.
This light-microscopic (LM) immunohistochemical study has evaluated the presence and distribution of the pan-neural and neuroendocrine marker protein gene product (PGP) 9.5 in pinealocytes and nerve fibres of guinea-pig pineal gland. The pattern of PGP 9.5-immunoreactive (ir) nerve fibres has been compared with that of fibres staining for tyrosine hydroxylase (TH) or neuropeptide Y (NPY). The vast majority of pinealocytes stained for PGP 9.5, although with variable intensity. PGP 9.5 immunoreactivity was localized in pinealocytic cell bodies and processes. Double-immunofluorescence revealed that PGP 9.5 immunoreactivity was absent from glial cells identified with a monoclonal antibody against glial fibrillary acidic protein (GFAP), PGP 9.5 immunoreactivity was also present in a large number of nerve fibres and varicosities distributed throughout the pineal gland. The number of TH-ir and NPY-ir nerve fibres was lower compared with those containing PGP 9.5 immunoreactivity. All fibres staining for NPY also stained for TH. NPY-ir nerve fibres were found to be much more numerous than previously reported for this species. The double-immunofluorescence analysis indicated that almost all TH-ir nerve fibres of the pineal gland contained PGP 9.5 immunoreactivity. However, few PGP 9.5-ir nerve fibres, located in the periphery and the central part of the gland, were TH-negative. A large number of PGP 9.5-ir fibres was concentrated in the pineal stalk. In contrast, TH-ir and NPY-ir nerve fibres were rare in this part of the pineal gland. Our data provide evidence that immunohistochemistry for PGP 9.5 may be a useful tool further to differentiate central and peripheral origins of pineal innervation. Furthermore, the staining of pinealocytes for PGP 9.5 may be exploited to study the three-dimensional morphology and the architecture of pinealocytes and their processes under various experimental conditions.  相似文献   

4.
Immunoreactive neuropeptide Y (NPY) was demonstrated in neuronal elements in the urinary bladder wall of the newborn guinea pig. Numerous intramural ganglia were found lying among the smooth muscle bundles and in the submucosa, and NPY-like immunoreactive nerve cell bodies were demonstrated within all of these ganglia. Nerve fibres containing NPY were also richly distributed in the detrusor muscle, submucosa and around blood vessels. In dissociated cell cultures from newborn guinea pig detrusor muscle, a subpopulation (70-85%) of both mononucleate and binucleate intramural neurones was shown to contain NPY-like immunoreactivity. A low percentage (1-6%) of the intramural bladder neurones contained dopamine-beta-hydroxylase. In conclusion, while some NPY-containing nerve fibres in the wall of the bladder are of sympathetic origin, especially those supplying blood vessels, the results of this present study establish that many of these NPY-containing nerve fibres originate from non-adrenergic cell bodies within the intramural bladder ganglia.  相似文献   

5.
本研究用免疫细胞化学技术观察了大鼠脑内参与兴奋性突触传递的代谢型谷氨酸受体5亚型(mGluR5)的精确定位分布.mGluR5阳性浓染的神经元胞体和纤维密集地分布于大脑皮质浅层、嗅球、伏核、尾壳核、前脑基底部、隔区、苍白球、腹侧苍白球、海马CA1和CA2区、下丘中央核、被盖背侧核和三叉神经脊束核尾侧亚核浅层;淡染而稀疏的mGluR5阳性神经元胞体和纤维见于屏状核、终纹床核、杏仁中央核、丘脑部分核团、上丘浅灰质层、外侧丘系背侧核和延髓中央灰质.  相似文献   

6.
7.
Cellular localization of a metabotropic glutamate receptor in rat brain.   总被引:16,自引:0,他引:16  
In rat brain, the cellular localization of a phosphoinositide-linked metabotropic glutamate receptor (mGluR1 alpha) was demonstrated using antibodies that recognize the C-terminus of the receptor. mGluR1 alpha, a 142 kd protein, is enriched within the olfactory bulb, stratum oriens of CA1 and polymorph layer of dentate gyrus in hippocampus, globus pallidus, thalamus, substantia nigra, superior colliculus, and cerebellum. Lower levels of mGluR1 alpha are present within neocortex, striatum, amygdala, hypothalamus, and medulla. Dendrites, spines, and neuronal cell bodies contain mGluR1 alpha. mGluR1 alpha is not detectable in presynaptic terminals. mGluR1 alpha and ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits show differential distributions, but in Purkinje cells, mGluR1 alpha and specific AMPA receptor subunits colocalize. The postsynaptic distribution of mGluR1 alpha is consistent with postulated physiological roles of this subtype of glutamate receptor.  相似文献   

8.
G-protein-coupled receptors play a key role in signal transduction processes. Despite G-protein-coupled receptors being transmembrane proteins, the notion that they exhibit voltage sensitivity is rather novel. Here we examine whether two metabotropic glutamate receptors, mGluR3 and mGluR1a, both involved in fundamental physiological processes, exhibit, by themselves, voltage sensitivity. Measuring mGluR3-induced K(+) currents and mGluR1a-induced Ca(2+)-activated Cl(-) currents in Xenopus oocytes, we show that the apparent affinity toward glutamate decreases (mGluR3) or increases (mGluR1a) upon depolarization. Measurements of binding of [(3)H]glutamate to oocytes expressing either mGluR3 or mGluR1a corroborated the electrophysiological results. Using the chimeric Galpha subunit, we further show that the voltage sensitivity does not reside in the G-protein. To locate sites within the receptors that are involved in the voltage sensitivity, we used chimeric mGluR1a, where the intracellular loops that couple to the G-protein were replaced by those of mGluR3. The voltage sensitivity of the chimeric mGluR1a resembled that of mGluR3 and not that of the parental mGluR1a. The cumulative results indicate that the voltage sensitivity does not reside downstream to the activation of the receptors but rather in the mGluR3 and mGluR1a themselves. Furthermore, the intracellular loops play a crucial role in relaying changes in membrane potential to changes in the affinity of the receptors toward glutamate.  相似文献   

9.
The developmental pattern and distribution of peptide-containing neurons in the rat heart right atrium has been studied by indirect immunofluorescence. Antibodies against neuropeptide Y (NPY), substance P (SP), and vasoactive intestinal polypeptide (VIP) were applied to whole-mount stretch preparations of the right atria from hearts of newborn to 40-day-old animals. NPY-like immunoreactivity (LI) was compared with the synaptic vesicle marker SV2 in double immunoincubation studies. The distribution of immunofluorescence was studied by confocal laser scanning microscopy. NPY-LI and SP-LI were present throughout the atria already at birth, in contrast to VIP-LI that was observed at day 10. The postnatal changes of innervation were basically quantitative, with an increase in density of nerve fibres and number of varicosities, while the basic pattern of innervation was essentially established during the first 1–10 days. NPY- and SP-positive bundles of fibres appeared to enter the right atrium along the superior caval vein, having extrinsic origins. Nerve fibres with NPY-LI colocalized in most nerve terminals with SV2-LI, and showed a developmental pattern similar to that observed for adrenergic neurons earlier. These NPY/SV2 positive fibres probably represent the extrinsic NPY innervation. In addition, NPY-LI was identified in large intrinsic nerve cells bodies located near the atrioventricular (AV) region. Most of the VIP-LI was observed in short nerve fibres originating in intrinsic VIP-positive cell bodies, but a few apparently extrinsic VIP-positive fibres were found, probably representing preganglionic parasympathetic neurons. SP in the atria was probably of extrinsic (sensory) origin and no nerve cell bodies with SP-LI were detected. The results show that the peptidergic innervation in the developing rat right atrium involves both extrinsic and intrinsic peptidergic neurons which may participate in the regulation of neurotransmission in local neuronal circuits.  相似文献   

10.
11.
The olfactory system is well suited for studies of glutamate receptor plasticity. The sensory neurons are glutamatergic, and they turn over throughout life, and the olfactory bulb neurons that process their inputs express many of the known glutamate receptor subunits. Neonatal naris occlusion alters olfactory bulb development and the expression of certain neuroactive substances and receptors, at least in part due to loss of the sensory inputs. We therefore postulated that neonatal naris occlusion might alter glutamate receptor expression during postnatal development. Single nares of newborn mice were occluded on postnatal days 1-2, and the distribution of glutamate receptor subunits was evaluated using immunoperoxidase methods. Light microscopic examination on postnatal day 6 failed to reveal adult-like staining of neuronal cell bodies in the olfactory bulbs. By day 12, cell bodies that were immunoreactive (-IR) for the GluR1 subunit were visible in the external plexiform layer (EPL) of both sides. By day 18, many of the GluR1-IR cell bodies could be identified as cell types that had previously been reported to express homomeric GluR1 receptors. Analysis of single, mid-dorsal sections from 18-25-day-old mice showed that the medial EPL of the occluded side had a significantly lower density of these cell bodies. The GluR1 staining of the adjacent mitral cell layer (MCL) was also heavier on the occluded side, but no gross differences in staining for other glutamate receptor subunits were observed. Neonatal naris occlusion therefore appears to provide a new model for studying expression of GluR1 receptors during the development of a discrete population of olfactory bulb neurons.  相似文献   

12.
Summary Nerve fibres displaying neuropeptide-Y (NPY) immunoreactivity are abundantly distributed in the respiratory tract of cats, guinea-pigs, rats and mice. Fine beaded NPY fibres were seen in whole-mount spreads of the middle-ear mucosa. In the nasal mucosa and in the wall of the Eustachian tube NPY fibres were numerous around arteries and arterioles but sparse in the vicinity of veins; single fibres were found close to the acini of seromucous glands. In the tracheobronchial wall NPY fibres occurred in the proximity of blood vessels, in the subepithelial layer and in the smooth muscle. Surgical and chemical (6-hydroxydopamine treatment) sympathectomy resulted in disappearance of adrenergic and NPY-containing nerve fibres in the nasal mucosa. Sequential staining with antibodies against dopamine--hydroxylase (DBH) and NPY revealed that DBH and NPY occur in the same perivascular nerve fibres in the nasal mucosa. The distribution of NPY fibres in the respiratory tract suggests multiple functions of NPY, such as regulation of local blood flow, glandular secretion and smooth muscle activity.  相似文献   

13.
The anti-Parkinsonian effect of glutamate metabotropic group 5 (mGluR5) and adenosine A(2A) receptor antagonists is believed to result from their ability to postsynaptically control the responsiveness of the indirect pathway that is hyperfunctioning in Parkinson's disease. mGluR5 and A(2A) antagonists are also neuroprotective in brain injury models involving glutamate excitotoxicity. Thus, we hypothesized that the anti-Parkinsonian and neuroprotective effects of A(2A) and mGluR5 receptors might be related to their control of striatal glutamate release that actually triggers the indirect pathway. The A(2A) agonist, CGS21680 (1-30 nM) facilitated glutamate release from striatal nerve terminals up to 57%, an effect prevented by the A(2A) antagonist, SCH58261 (50 nM). The mGluR5 agonist, CHPG (300-600 mum) also facilitated glutamate release up to 29%, an effect prevented by the mGluR5 antagonist, MPEP (10 microm). Both mGluR5 and A(2A) receptors were located in the active zone and 57 +/- 6% of striatal glutamatergic nerve terminals possessed both A(2A) and mGluR5 receptors, suggesting a presynaptic functional interaction. Indeed, submaximal concentrations of CGS21680 (1 nM) and CHPG (100 microm) synergistically facilitated glutamate release and the facilitation of glutamate release by 10 nM CGS21680 was prevented by 10 microm MPEP, whereas facilitation by 300 microm CHPG was prevented by 10 nM SCH58261. These results provide the first direct evidence that A(2A) and mGluR5 receptors are co-located in more than half of the striatal glutamatergic terminals where they facilitate glutamate release in a synergistic manner. This emphasizes the role of the modulation of glutamate release as a likely mechanism of action of these receptors both in striatal neuroprotection and in Parkinson's disease.  相似文献   

14.
Abstract: Metabotropic glutamate receptor (type 1; mGluR1 ) is expressed predominantly in the hippocampus and the cerebellum. Using cultured cerebellar granule cells, we investigated the regulation of the mGluR1 mRNA expression. Levels of mGluR1 mRNA were decreased to less than half by high potassium stimulation and by glutamate and quisqualate. Although these glutamate receptor agonists tested are also known to cause neuronal cell death in culture, the effect of cell death cannot explain the observed reduction in mGluR1 mRNA because of the following reasons: (a) antagonists of N -methyl-D-aspartate and non- N -methyl-D-aspartate receptors inhibited cell death, but not the reduction of the level of mGluR1 mRNA; (b) mGluR1 mRNA returned to its initial level 48 h after the agonist application; and (c) the mRNA level of one of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors (GluR1) was not altered by these conditions. Therefore, we conclude that the glutamate or quisqualate stimulation can specifically inhibit the expression of mGluR1 mRNA. The dose response of quisqualate for the reduction in mGluR1 mRNA is consistent with that for inositol phosphate formation stimulated through the cloned mGluR1 . The mRNA reduction did not require extracellular calcium. Desensitization of mGluR1 with phorbol ester abolished the mRNA reduction. These results suggest that the reduction in mGluR1 mRNA is mediated by the activation of the metabotropic receptor itself.  相似文献   

15.
16.
The distribution and morphology of neurons containing somatostatin (SOM) was investigated in the amygdala (CA) of the pig. The SOM-immunoreactive (SOM-IR) cell bodies and fibres were present in all subdivisions of the porcine CA, however, their number and density varied depending on the nucleus studied. The highest density of SOM-positive somata was observed in the layer III of the cortical nuclei, in the anterior (magnocellular) part of the basomedial nucleus and in the caudal (large-celled) part of the lateral nucleus. Moderate to high numbers of SOM-IR cells were also observed in the medial and basolateral nuclei. Many labeled neurons were also consistently observed in the lateral part of the central nucleus. In the remaining CA regions, the density of SOM-positive cell bodies varied from moderate to low. In any CA region studied SOM-IR neurons formed heterogeneous population consisting of small, rounded or slightly elongated cell bodies, with a few poorly branched smooth dendrites. In general, morphological features of these cells clearly resembled the non-pyramidal Golgi type II interneurons. The routine double-labeling studies with antisera directed against SOM and neuropeptide Y (NPY) demonstrated that a large number of SOM-IR cell bodies and fibers in all studied CA areas contained simultaneously NPY. In contrast, co-localization of SOM and cholecystokinin (CCK) or SOM and vasoactive intestinal polypeptide (VIP) was never seen in cell bodies and fibres in any of nuclei studied. In conclusion, SOM-IR neurons of the porcine amygdala form large and heterogeneous subpopulation of, most probably, interneurons that often contain additionally NPY. On the other hand, CCK- and/or VIP-IR neurons belonged to another, discrete subpopulations of porcine CA neurons.  相似文献   

17.
Summary The distribution of substance P (SP) immunofluorescence was investigated in the Gasserian ganglion, ophthalmic nerve and in the anterior segment of the rabbit eye. About one third of the nerve cell bodies in the Gasserian ganglion exhibited SP immunofluorescence, which was also observed in some nerve fibres of the ophthalmic nerve. In the cornea, some SP-positive iris contained numerous nerve fibres with SP immunofluorescence. In the sphincter area such fibres were circular, while the orientation of the SP fibres was radial in the dilator muscle. Both in the iris and in the ciliary body, the largest vessels were surrounded by nerves exhibiting SP immunofluorescence. A few nerve fibres also appeared in the stroma of the ciliary processes.  相似文献   

18.
Immunohistochemistry has been used to demonstrate tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactivities, and acetylcholinesterase (AChE) activity was demonstrated in rat adrenal glands. The TH, DBH, NPY and VIP immunoreactivities and AChE activity were observed in both the large ganglion cells and the small chromaffin cells whereas PNMT immunoreactivity was found only in chromaffin cells, and not in ganglion cells. Most intraadrenal ganglion cells showed NPY immunoreactivity and a few were VIP immunoreactive. Numerous NPY-immunoreactive ganglion cells were also immunoreactive for TH and DBH; these cells were localized as single cells or groups of several cells in the adrenal cortex and medulla. Use of serial sections, or double and triple staining techniques, showed that all TH- and DBH-immunoreactive ganglion cells also showed NPY immunoreactivity, whereas some NPY-immunoreactive ganglion cells were TH and DBH immunonegative. NPY-immunoreactive ganglion cells showed no VIP immunoreactivity. AChE activity was seen in VIP-immunopositive and VIP-immunonegative ganglion cells. These results suggest that ganglion cells containing noradrenaline and NPY, or NPY only, or VIP and acetylcholine occur in the rat adrenal gland; they may project within the adrenal gland or to other target organs. TH, DBH, NPY, and VIP were colocalized in numerous immunoreactive nerve fibres, which were distributed in the superficial adrenal cortex, while TH-, DBH- and NPY-immunoreactive ganglion cells and nerve fibres were different from VIP-immunoreactive ganglion cells and nerve fibres in the medulla. This suggests that the immunoreactive nerve fibres in the superficial cortex may be mainly extrinsic in origin and may be different from those in the medulla.  相似文献   

19.
By the use of two different double-staining techniques (simultaneous staining of adjacent serial sections and the double-staining elution method) it was possible to demonstrate that a corticotropin-releasing factor (CRF) immunofluorescence co-existed with an adrenocorticotropin (ACTH) and beta-endorphin (beta-END) immunoreactivity, but not with a Met-enkephalin (Met-ENK) immunostaining, within perikarya subpopulations of both the myenteric and submucousal plexus of the rat duodenum. Not a single Met-ENK-positive neuronal cell body was stained also for CRF, ACTH or beta-END. Even nerve fibres, localized in both the myenteric plexus and closely to submucousal blood vessels (probably arterioles), revealed a CRF immunofluorescence, which is also colocalized with an beta-END staining. These results are quite different to the recent observations in the mammalian hypothalamus, suggesting that some myenteric and submucousal plexus neurons may synthesize CRF as well as beta-END and ACTH, but not Met-ENK. The colocalized peptides might be concomitantly released into the synaptic cleft after terminal stimulation.  相似文献   

20.
Glutamate is an excitatory neurotransmitter implicated in learning and memory processes, but at high concentrations it acts as an excitotoxin causing degeneration and neuronal death. The aim of this work was to determine the excitotoxic effect of glutamate and the regulation of metabotropic glutamate receptors (mGluR) during excitotoxicity in neurons and C6 glioma cells. Results show that glutamate causes excitotoxic damage only in cortical neurons. Loss of cell viability in neurons was glutamate concentration- and time-dependent. Total mGluR levels were significantly reduced in these cells when exposed to glutamate. However, in C6 cells, which have been used as a model of glial cells, these receptors were regulated in a biphasic manner, decreased after 6 h, and increased after 24/48 h of treatment. Results show a cell dependent mGluR regulation by glutamate exposure which could mediate the vulnerability or not to glutamate mediated excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号