首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Promoter elements important for basal and cyclic AMP (cAMP)-regulated expression of the phosphoenolpyruvate carboxykinase (PEPCK) gene have been identified by analysis of a series of PEPCK promoter mutations in transfection experiments. Fusion genes containing wild-type and mutated PEPCK promoter sequences from -600 to +69 base pairs (bp) fused to the coding sequence for chloramphenicol acetyltransferase were studied. Internal deletion mutations that replaced specific bases with a 10-bp linker within the region from -129 bp to -18 bp of the PEPCK promoter were examined. In addition, wild-type and mutated DNA templates were used as probes in DNase I protection experiments to determine sites of protein-DNA interaction. The PEPCK promoter contains a binding site for nuclear factor 1-CAAT. Deletion of the 5' end of this binding site reduced the size of the DNase I footprint in this region but had no effect on promoter activity. In contrast, deletion or disruption of the 3' end of this binding site completely eliminated protein binding and reduced promoter activity by 50%. Deletion of core sequences of the cAMP regulatory element (CRE) resulted in loss of cAMP responsiveness and an 85% decrease in basal promoter activity, indicating that the CRE also functions as a basal stimulatory element. Mutation of the core sequence of the CRE resulted in loss of the DNase I footprint over the CRE. Internal deletions flanking the CRE showed no loss of induction by cAMP but did have reduced promoter activity. This delimits the CRE to an 18-bp region between nucleotides -100 and -82. Analysis of mutations that disrupted bases between the CRE and the initiation site identified a basal inhibitory element adjacent to a basal stimulatory element, both located just 3' of the CRE, as well as a basal stimulatory element coincident with the TATA consensus sequence centered at -27. These data demonstrate that several cis-acting elements are located within 130 nucleotides of the initiation site of the PEPCK gene and that the CRE is essential for both basal promoter activity and cAMP-regulated expression of this gene.  相似文献   

3.
4.
5.
6.
7.
The Niemann Pick-C1 (NPC-1) protein is essential for intracellular transport of cholesterol derived from low-density lipoprotein import in mammalian cells. The role of the protein kinase A (PKA) pathway in regulation of expression of the NPC-1 gene was investigated. NPC-1 promoter activity was induced by treatment with dibutryl cAMP (dbcAMP), alone or in combination with the cAMP response element (CRE) binding protein (CREB) overexpressed in adrenal Y-1 cells. When the catalytic subunit of PKA was overexpressed in Y-1 cells, there were similar increases in NPC-1 promoter activity in the presence of CREB. Responses were attenuated by blockade of the PKA pathway, and in the Kin-8 cell line deficient in PKA. Promoter deletion analysis revealed that this response was present in promoter fragments of 186 bp and larger but not present in the 121-bp fragment. Two promoter regions, one at -430 and one at -120 upstream of the translation initiation site, contained CRE consensus sequences. These bound recombinant CREB in EMSA, confirming their authenticity as CREB response elements. Promoters bearing mutations of both CRE displayed no response to dbcAMP. The orphan nuclear receptor, steroidogenic factor-1 (SF-1), was implicated in NPC-1 transactivation by the presence of SF-1 target sequence that formed a complex with recombinant SF-1 in EMSA. Furthermore, transfection of a plasmid that overexpressed SF-1 into ovarian granulosa cells increased promoter activity in response to dbcAMP, an effect abrogated by mutation of the SF-1 target sequence. Chromatin immunoprecipitation assays demonstrated that the CRE region of the endogenous and transfected NPC-1 promoter associated with both acetylated and phosphorylated histone H-3 and that this association was increased by dbcAMP treatment. Treatment with dbcAMP also increased the association of the CRE region of the promoter with CREB binding protein, which has histone acetyltransferase activity. Together, these results demonstrate a mechanism of regulation of NPC-1 expression by the cAMP-PKA pathway that includes PKA phosphorylation of CREB, recruitment of the coactivator CREB binding protein and the phosphorylation and acetylation of histone H-3 to transactivate the NPC-1 promoter.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The 5'-flanking region of the rat glucagon gene contains, from nucleotides -291 to -298, a sequence (TGA CGTCA) which mediates cyclic AMP (cAMP) responsiveness in several genes (cAMP-responsive element [CRE]). However, because of nonpermissive bases surrounding the CRE octamer, the glucagon CRE does not confer cAMP responsiveness to an inert heterologous promoter in placental JEG cells that do not express the glucagon gene. This report describes transient transfection experiments with glucagon-reporter fusion genes that show that glucagon gene expression is activated by cAMP-dependent protein kinase A in a glucagon-expressing pancreatic islet cell line. This activation is mediated through the glucagon CRE.  相似文献   

19.
A human PGHS-2 promoter fragment (300 BP) linked to the luciferase reporter was used to study the regulation of PGHS-2 gene expression in human amnion-derived WISH cells. A cyclic AMP (cAMP) response element (CRE) was found to be important in the induction of PGHS-2 gene expression. This was demonstrated by showing that coexpression of CREB stimulated native but not CRE mutant promoter and that IL-1beta and PMA induced less activity with the mutant promoter as compared to the native promoter. The effect of dexamethasone on IL-1beta and PMA induced promoter activities was further examined. IL-1beta or PMA induced activity was blocked by dexamethasone, whereas IL-1beta or PMA induced mutant activity was not responsive to dexamethasone. Direct activation of CRE by a cAMP elevating agent, isoproterenol, was found to be inhibited significantly dexamethasone. These results suggest that CRE may mediate the induction of PGHS-2 by IL-1beta and PMA as well as the suppression of expression by dexamethasone in amnion-derived cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号