首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method presented here is a high-performance liquid chromatography (HPLC)-UV detection method for the determination of baclofen R-(-)- and S-(+)-enantiomers in human plasma using a chiral separation technique. Baclofen enantiomers were extracted from human plasma with a reversed-phase solid-phase extraction (SPE) cartridge. The extract was then injected onto a HPLC system with a UV detection system set at 220 nm. The separation was achieved by using a 150x4.6 mm, 5 microm Phenomenex chirex 3216 chiral column with a mobile phase consisting of 0.4 mM CuSO(4) in acetonitrile-20 mM sodium acetate (17:83). The calibration curves were linear for both R-(-)- and S-(+)-enantiomers of baclofen in the concentration range of 20-5000 ng/ml. The average regressions were 0.9980 and 0.9991 for R-(-)- and S-(+)-baclofen, respectively. Inter-day precision was 3.3-5.2% for R-(-)-baclofen and 3.5-3.9% for S-(+)-baclofen at a concentration range of 60-4000 ng/ml. Intra-day precisions were 0.6-4.4 and 0.5-3.5% for R-(-)-baclofen and S-(+)-baclofen, respectively. The average extraction recovery was 81.6% for R-(-)-baclofen, 83.0% for S-(+)-baclofen and 94.0% for the internal standard (p-aminobenzoic acid). The limit of quantitation for both R-(-)- and S-(+)-baclofen in human plasma was 20 ng/ml. The method is simple and easy to operate with accuracy and reproducibility and it is suitable for pharmacokinetic studies.  相似文献   

2.
Citalopram (CITA) is available as a racemic mixture and as a pure enantiomer. Its antidepressive action is related to the (+)-(S)-CITA and to the metabolite (+)-(S)-demethylcitalopram (DCITA). In the present investigation, a method for the analysis of CITA and DCITA enantiomers in human and rat plasma was developed and applied to the study of pharmacokinetics. Plasma samples (1 ml) were extracted at pH 9.0 with toluene:isoamyl alcohol (9:1, v/v). The CITA and DCITA enantiomers were analyzed by LC-MS/MS on a Chiralcel OD-R column. Recovery was higher than 70% for both enantiomers. The quantification limit was 0.1 ng/ml, and linearity was observed up to 500 ng/ml plasma for each CITA and DCITA enantiomer. The method was applied to the study of the kinetic disposition of CITA administered in a single oral dose of 20 mg to a healthy volunteer and in a single dose of 20 mg/kg (by gavage) to Wistar rats (n = 6 for each time). The results showed a higher proportion of the (-)-(R)-CITA in human and rat plasma, with S/R AUC ratios for CITA of 0.28 and 0.44, respectively. S/R AUC ratios of DCITA were 0.48 for rats and 1.04 for the healthy volunteer.  相似文献   

3.
A sensitive liquid chromatography-electrospray ionization tandem mass spectrometry method (LC/ESI/MS/MS) for the enantioselective determination of (S)-(+)-BMS-204352, a potent and specific maxi-K channel opener, in human, rat and dog plasma was developed. (S)-(+)-BMS-204352, its enantiomer (R)-(--)-BMS-204353 and the internal standard (13C-deuterated racemate of (S)-(+)-BMS-204352) were extracted from plasma using toluene. Chromatographic separation for the enantiomers was achieved on a Chiralcel OD-H analytical column with a run time of 8 min. An aqueous mobile phase modifier was added post column to enhance the mass spectrometer sensitivity. ESI mass spectra were acquired in the negative mode with selected reaction monitoring. The limit of quantitation (LLOQ) is 0.10 ng/mL for human plasma assay. Samples from a clinical study and two animal studies were processed using these procedures. Based on the in vivo data, lack of inversion of (S)-(+)-BMS-204352 to (R)-(--)-BMS-204353 was demonstrated in human, rat and dog after administration of the drug. A sensitive non-enantioselective LC/ESI/MS/MS assay has also been developed for (S)-(+)-BMS-204352 which uses a similar extraction procedure with a C18 column with a limit of quantitation at 0.05 ng/mL. Human study samples were analyzed by both methods and the correlation coefficient between both sets of data is greater than 0.99.  相似文献   

4.
An enantioseparation of the antipsychotic drug butaclamol in human plasma by high-performance liquid chromatography (HPLC) with solid phase extraction is presented. The separation was achieved on the vancomycin macrocyclic antibiotic chiral stationary phase (CSP) Chirobiotic V with a polar ionic mobile phase (PIM) consisting of methanol : glacial acetic acid : triethylamine (100:0.2:0.05, v/v/v) at a flow rate of 0.5 ml/min. The detection wavelength was 262 nm. Bond Elut C18 solid phase extraction cartridges were used in the sample preparation of butaclamol samples from plasma. The method was validated over the range of 100-3,000 ng/ml for each enantiomer concentration (R(2) > 0.999). Recoveries for (+)- and (-)-butaclamol were in the range of 94-104% at the 300-2,500 ng/ml level. The method proved to be precise (within-run precision ranged from 1.1-2.6% and between-run precision ranged from 1.9-3.2%) and accurate (within-run accuracies ranged from 1.5-5.8% and between-run accuracies ranged from 2.7-7.7%). The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 ng/ml and 50 ng/ml, respectively.  相似文献   

5.
A sensitive and selective high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of bufuralol enantiomers in plasma and pharmaceutical formulations. Enantiomeric resolution was achieved on a vancomycin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic V with UV detection set at 254 nm. The polar ionic mobile phase (PIM) consisting of methanol-glacial acetic acid-triethylamine (100:0.015:0.010, v/v/v) has been used at a flow rate of 0.5 ml/min. The method is highly specific where other coformulated compounds did not interfere. The stability of bufuralol enantiomers under different degrees of temperature was also studied. The results showed that the drug is stable for at least 7 days at 70 degrees C. The method was validated for its linearity, accuracy, precision and robustness. An experimental design was used during validation to evaluate method robustness. The calibration curves in plasma were linear over the range of 5-500 ng/ml for each enantiomer with detection limit of 2 ng/ml. The mean relative standard deviation (RSD) of the results of within-day precision and accuracy of the drug were 0.05) between inter- and intra-day studies for each enantiomer which confirmed the reproducibility of the assay method. The mean extraction efficiency for S-(-)- and R-(+)-bufuralol from plasma was in the range 97-102% at 15-400 ng/ml level for each enantiomer. The overall recoveries of bufuralol enantiomers from pharmaceutical formulations was in the range 99.6-102.2% with %RSD ranging from 1.06 to 1.16%. The assay method proved to be suitable as chiral quality control for bufuralol formulations by HPLC and for therapeutic drug monitoring.  相似文献   

6.
Nisoldipine, a second-generation dihydropyridine calcium antagonist, is a racemate compound used in the treatment of hypertension and coronary heart disease. This study presents an enantioselective HPLC-GC–MS method for the analysis of nisoldipine in human plasma and establishes confidence limits for its application to pharmacokinetic studies. Plasma samples were basified and extracted with toluene. The enantiomers were resolved on a Chiralcel® OD-H column using hexane–ethanol (97.5:2.5, v/v) and the (+)- and (−)-fractions were collected separately with the diode array detector switched off. For the quantification of the nisoldipine enantiomers a GC–MS with an Ultra 1 Hewlett-Packard column was used with the detector operated in the single-ion monitoring mode with electron-impact ionization (m/z 371.35 and 270.20 for nisoldipine and m/z 360.00 for the internal standard, nitrendipine). The method proved to be suitable for pharmacokinetic studies based on the low quantification limit (0.05 ng/ml for each enantiomer) and the broad linear range (0.05–50.0 ng/ml for each enantiomer). Low coefficients of variation (<15%) were demonstrated for both within-day and between-day assays. No interference from drugs associated with nisoldipine treatment was observed. The enantioselective pilot study on the kinetic disposition of nisoldipine administered in the racemic form to a hypertensive patient using a multiple dose regimen revealed the accumulation of the (+)-enantiomer with an AUC0–24 (+)/(−) ratio of approximately 8. Both enantiomers were quantified in plasma at a time interval of 24 h. This HPLC-GC–MS method is reliable, selective and sensitive enough to be used in clinical pharmacokinetic studies on the enantioselective disposition of nisoldipine in humans.  相似文献   

7.
We have developed a sensitive, high-pressure liquid chromatographic-tandem mass spectrometric (LC/MS/MS) method for the simultaneous determination of didanosine (ddI) and stavudine (d4T) in human plasma, bronchoalveolar lavage fluid (BALF), alveolar cells (AC), peripheral blood mononuclear cells (PBMC), seminal plasma, cerebrospinal fluid (CSF), and tonsil tissue. Plasma, AC, PBMC and CSF were run with an isocratic HPLC method, while BALF supernatant, semen, and tonsil tissue utilized a gradient elution. Samples were prepared by solid phase extraction. Detection was by electrospray positive ionization with multiple reaction monitoring mode. The lower limits of quantitation for both ddI and d4T were 2.0 ng/ml in plasma; 0.5 ng/ml in CSF; 0.4 ng/ml in AC, PBMC, and BALF; 1.0 ng/ml in seminal plasma; and 0.01 ng/mg in tonsil tissue.  相似文献   

8.
M Enquist  J Hermansson 《Chirality》1989,1(3):209-215
A method for the determination of (R)- and (S)-atenolol in human plasma and urine is described. The enantiomers of atenolol are extracted into dichloromethane containing 3% heptafluorobutanol followed by acetylation with acetic anhydride at 60 degrees C for 2 h. The acetylated enantiomers were separated on a chiral alpha 1-AGP column. Quantitation was performed using fluorescence detection. A phosphate buffer pH 7.1 (0.01 M phosphate) containing 0.25% (v/v) acetonitrile was used as mobile phase. The described procedure allows the detection of less than 6 ng of each enantiomer in 1 ml plasma. The relative standard deviation is 4.4% at 30 ng/ml of each enantiomer in plasma. The plasma concentration of (R)- and (S)-atenolol did not differ significantly in two subjects who received a single tablet of racemic atenolol. The R/S ratio of atenolol in urine was approximately 1.  相似文献   

9.
A sensitive, stereoselective assay using solid phase extraction and LC-MS-MS was developed and validated for the analysis of (R)- and (S)-bupropion and its major metabolite (R,R)- and (S,S)-hydroxybupropion in human plasma and urine. Plasma or glucuronidase-hydrolyzed urine was acidified, then extracted using a Waters Oasis MCX solid phase 96-well plate. HPLC separation used an alpha(1)-acid glycoprotein column, a gradient mobile phase of methanol and aqueous ammonium formate, and analytes were detected by electrospray ionization and multiple reaction monitoring with an API 4000 Qtrap. The assay was linear in plasma from 0.5 to 200 ng/ml and 2.5 to 1000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. The assay was linear in urine from 5 to 2000 ng/ml and 25 to 10,000 ng/ml in each bupropion and hydroxybupropion enantiomer, respectively. Intra- and inter-day accuracy was >98% and intra- and inter-day coefficients of variations were less than 10% for all analytes and concentrations. The assay was applied to a subject dosed with racemic bupropion. The predominant enantiomers in both urine and plasma were (R)-bupropion and (R,R)-hydroxybupropion. This is the first LC-MS/MS assay to analyze the enantiomers of both bupropion and hydroxybupropion in plasma and urine.  相似文献   

10.
Oh JW  Trung TQ  Sin KS  Kang JS  Kim KH 《Chirality》2007,19(7):528-535
A coupled achiral-chiral high performance liquid chromatographic method was developed and fully validated for the determination of bevantolol enantiomers, (-)-(S)-bevantolol and (+)-(R)-bevantolol, in human plasma. Plasma samples were prepared by solid phase extraction with Sep-Pak Plus C18 cartridges followed by HPLC. Bevantolol enantiomers and (+)-(R)-Propranolol as internal standard (IS) were preseparated from interfering components in plasma on a Phenomenex silica column and bevantolol enantiomers and IS were resolved and determined on a Chiralcel OJ-H chiral stationary phase. The two columns were connected by a switching valve equipped with silica precolumn. The Precolumn was used to concentrate bevantolol in the eluent from the achiral column before back flushing onto chiral phase. A detailed validation of the method was performed accordingly to FDA guidelines. For each enantiomer the assay was linear between 20 and 1600 ng/ml. The quantification limits of both bevantolol enantiomers were 20 ng/ml. The intraday variation was between 1.07 and 12.64% in relation to the measured concentration and the interday variation was 0.91 and 11.79%. The method has been applied to the determination of (-)-(S)- and (+)-(R)-bevantolol in plasma from healthy volunteers dosed with racemic bevantolol hydrochloride.  相似文献   

11.
Hong Z  Fan G  Chai Y  Yin X  Wu Y 《Chirality》2005,17(5):293-296
Tetrahydropalmatine (THP) is a biologically active ingredient isolated from a traditional Chinese herb Rhizoma corydalis (yanhusuo). THP is a racemic mixture which contains 50% of the (+) and 50% of (-) enantiomer. The (-) enantiomer accounts for most of the analgesic effects. Plasma concentrations of THP enantiomers were analyzed by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OJ column with quantification by UV at 230 nm. The method was used to determine the pharmacokinetics of THP enantiomers in rats and dogs after oral administration of rac-THP or (-)-THP. The pharmacokinetic profiles of the two enantiomers after dosing with rac-THP were significantly different both in rats and dogs. The mean C(max) and AUC(0-infinity) values in rats were 1.93 +/- 0.36 microg/ml and 6.65 +/- 2.34 microg x h/ml for the (-) enantiomer, and 1.11 +/- 0.25 microg/ml and 2.03 +/- 0.45 microg x h/ml for the (+) enantiomer. The mean C(max) and AUC(0-infinity) in dogs were 1.60 +/- 0.81 microg/ml and 9.88 +/- 2.58 microg x h/ml for the (-) enantiomer, while 0.36 +/- 0.21 microg/ml and 1.22 +/- 0.40 microg x h/ml for the (+) enantiomer. rac-THP at 40 mg/kg and (-)-THP at 20 mg/kg had very similar plasma concentration-time profiles, and C(max), AUC(0-infinity), and t(1/2) of the (-) enantiomer in both rats and dogs, indicating that the two treatments were equivalent with respect to the pharmacokinetic properties of the (-) enantiomer.  相似文献   

12.
A fast, sensitive, and enantioselective LC-MS/MS bioanalytical method was developed and validated for the direct determination of individual alprenolol enantiomers in human plasma using cellobiohydrolase (CBH) chiral stationary phases (CSP) along with supported liquid extraction (SLE) procedures. Complete baseline separation of enantiomeric alprenolol was achieved within 2 min in reversed phase chromatography at 0.9 ml/min. SLE in a 96-well plate format was used for sample extraction. The method validation was conducted over the curve range of 0.500-500 ng/ml for each alprenolol enantiomer using 0.0500 ml of plasma sample. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels showed < or = 7.3% relative standard deviation (RSD) and -6.2 to 8.0% relative error (RE) for both alprenolol enantiomers.  相似文献   

13.
R(−)-Ondansetron and S(+)-ondansetron in human serum were resolved and quantified using a stereospecific HPLC method. Each enantiomer and the internal standard prazosin were isolated from serum using a solid-phase extraction procedure on a cyanopropyl column. Recoveries of 97, 96 and 88% were obtained for the R(−)-enantiomer, the S(+)-enantiomer, and the internal standard, respectively. A cellulose-based chiral analytical column (Chiralcel OD) was used with a mobile phase consisting of hexane—95% ethanol—2-propanol—acetonitrile (65:25:10:1, v/v). Linear calibration curves were obtained for each enantiomer in serum in the concentration range 10–200 ng/ml. The limit of quantitation of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using UV detection at 216 nm was 2.5 ng/ml (signal-to-noise ratio of 3).  相似文献   

14.
A stereoselective reversed-phase HPLC assay to determine S-(-) and R-(+) enantiomers of esmolol in human plasma was developed. The method involved liquid-liquid extraction of esmolol from human plasma, using S-(-)-propranolol as the internal standard, and employed 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The derivatized products were separated on a 5-microm reversed-phase C18 column with a mixture of acetonitrile/0.02 mol/L phosphate buffer (pH 4.5) (55:45, v/v) as mobile phase. The detection of esmolol derivatives was made at lambda=224 nm with UV detector. The assay was linear from 0.035 to 12 microg/ml for each enantiomer. The analytical method afforded average recoveries of 94.8% and 95.5% for S-(-)- and R-(+)-esmolol, respectively. For each enantiomer, the limit of detection was 0.003 microg/ml and the limit of quantification for the method was 0.035 microg/ml (RSD<14%). The reproducibility of the assay was satisfactory.  相似文献   

15.
A highly sensitive HPLC method for enantioselective determination of carvedilol in human whole blood and plasma was developed. Carvedilol and S-carazolol as an internal standard extracted from whole blood or plasma were separated using an enantioselective separation column (Chiralpak AD column; 2.0 diameter x 250 mm) without any chiral derivatizations. The mobile phase was hexane:isopropanol:diethylamine (78:22:1, v/v). The excitation and emission wavelengths were set at 284 and 343 nm, respectively. The limits of quantification for the S(-)- and R(+)-carvedilol enantiomers in plasma and blood were both 0.5 ng/ml. Intra- and inter-day variations were less than 5.9%. As an application of the assay, concentrations of carvedilol enantiomer in plasma and blood samples from 15 patients treated with carvedilol for congestive heart failure were determined.  相似文献   

16.
A sensitive and reliable method for the determination of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, in human plasma and cerebrospinal fluid (CSF) has been developed. The method is based on capillary liquid chromatography (LC)/tandem mass spectrometry (MS/MS) using deuterium-labeled GABA (gamma-aminobutyric acid-2,2-D(2), GABA-d(2)) as internal standard. Pre-column derivatization with 7-fluoro-4-nitrobenzoxadiazole (NBD-F) was deployed, allowing both effective in-line pre-concentration and sensitive tandem MS detection of the analyte. An extraction column (10 mm x 0.25 mm, 7 microm, C(18)) was used for preconcentrating and stacking the sample. Separation was carried out on an analytical column (50 mm x 0.25 mm, 5 microm, C(18)). Characteristic precursor-to-product ion transitions, m/z 267--> 249 (for NBD-GABA) and m/z 269--> 251 (for NBD-GABA-d(2)) were monitored for the quantification. A linear calibration curve from 10 to 250 ng/mL GABA with an r(2) value of 0.9994 was obtained. Detection limit was estimated to be 5.00 ng/mL GABA (S/N = 3). Human plasma and CSF samples were analyzed. The concentrations of GABA were found to be 98.6 +/- 33.9 ng/mL (mean +/- S.D., n = 12), and 44.3 +/- 10.0 ng/mL (n = 6) in plasma and CSF, respectively.  相似文献   

17.
We have developed a simple, sensitive, specific and reproducible stereoselective high-performance liquid chromatography technique for analytical separation of cisapride enantiomers and measurement of cisapride enantiomers in human plasma. A chiral analytical column (ChiralCel OJ) was used with a mobile phase consisting of ethanol–hexane–diethylamine (35:64.5:0.5, v/v/v). This assay method was linear over a range of concentrations (5–125 ng/ml) of each enantiomer. The limit of quantification was 5 ng/ml in human plasma for both cisapride enantiomers, while the limit of detection was 1 ng/ml. Intra- and inter-day C.V.s did not exceed 15% for all concentrations except at 12.5 ng/ml for EII (+)-cisapride, which was 20 and 19%, respectively. The clinical utility of the method was demonstrated in a pharmacokinetic study of normal volunteers who received a 20 mg single oral dose of racemic cisapride. The preliminary pharmacokinetic data obtained using the method we describe here provide evidence for the first time that cisapride exhibits stereoselective disposition.  相似文献   

18.
A robust and validated liquid-liquid extraction LC-MS/MS method was developed for population pharmacokinetic analysis and therapeutic drug monitoring of risperidone and the enantiomers of its major active metabolite (+)-and (-)9-hydroxyrisperidone in pediatric patients. The method was rapid, sensitive and used a low sample amount (200 microL), which is very desirable for the pediatric population. The assay was validated from 0.2 to 50 ng/mL in plasma for all analytes. LLOQ for all analytes was 0.2 ng/mL. The extracts were analyzed by normal phase LC-MS/MS. The sample run time was 8 min. Intra- and interday precision for all analytes was < or =6%; method accuracy was between 89 and 99%. Additional experiments were performed to analyze matrix effects and identify a proper internal standard for each analyte. The validated method was used to study risperidone and its enantiomer metabolites in plasma as part of a population pharmacokinetic study in pediatric patients with pervasive developmental disorder (PDD).  相似文献   

19.
A selective and sensitive LC/MS/MS assay was developed for the quantification of d(2)-nicotine and d(2)-cotinine in plasma of current and past smokers administered d(2)-nicotine. After solid phase extraction and liquid-liquid extraction, HPLC separation was achieved on a capillary hydrophilic interaction chromatography phase column. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated for d(2)-nicotine (0.03-6.0 ng/ml plasma) and d(2)-cotinine (0.15-25 ng/ml plasma). The lower limits of quantitation were 0.15 ng/ml and 0.25 ng/ml for d(2)-nicotine and d(2)-cotinine, respectively. The coefficient of variation was 3.7% for d(2)-nicotine and 2.5% for d(2)-cotinine. The method was applied to two ongoing studies of d(2)-nicotine metabolism in prior and current smokers. Preliminary analysis of a subset of subjects from these studies detected a significantly lower rate of nicotine conversion to cotinine by past smokers compared to current smokers.  相似文献   

20.
The simultaneous disposition of fenoprofen enantiomers in synovial fluid and plasma was studied in 11 patients with arthritis and chronic knee effusions treated with a single oral dose of 600 mg rac-fenoprofen. A plasma sample and a synovial fluid sample were collected simultaneously from each patient up to 16 h after the administration of fenoprofen. A stereospecific assay for fenoprofen using LC-MS-MS was developed and applied successfully to the analysis of the enantiomers in plasma (LOQ = 10 ng of each enantiomer/ml) and synovial fluid (LOQ = 25 ng of each enantiomer/ml). The values of the area under the curve (AUC) for the S-(+)-fenoprofen eutomer were approximately 2.5 times higher in plasma than in synovial fluid (256 vs 104 microg h/ml), while the values for the R-(-)-fenoprofen distomer were about four times higher in plasma than in synovial fluid (42.5 vs 10.5 microg h/ml). These data demonstrate accumulation of the S-(+)-fenoprofen eutomer in plasma and in synovial fluid, with concentrations versus time AUC (+)/(-) ratios of 6.0 in plasma and 9.9 in synovial fluid, suggesting a greater accumulation of the eutomer at the active site represented by synovial fluid than in plasma. This result demonstrates the importance of enantioselective methods and of analysis of synovial fluid rather than plasma in studies of the pharmacokinetics-pharmacodynamics of fenoprofen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号