首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biosynthesis of the neurotoxin domoic acid (DA) in the diatom Pseudo-nitzschia multiseries was investigated using 13C- and 14C-labelled precursors. The labelling pattern determined by NMR spectroscopy following incorporation of [1,2-13C2]-acetate showed enrichment of every carbon of DA. The enrichment levels were consistent with a biosynthetic pathway involving two different intermediate precursor units. Addition of labelled acetate either early or late during exponential growth gave similar patterns and levels of incorporation. Analysis of the labelling pattern indicated that DA is biosynthesised by condensation of an isoprenoid intermediate with another intermediate derived from the tricarboxylic acid (TCA) cycle. The absence of deuterium at C2 in DA following incorporation of [2-13C, 2H3]-acetate is consistent with alpha-ketoglutarate or a derivative as the TCA cycle-derived intermediate. The different incorporation efficiencies of acetate into the putative precursor intermediates suggest that either each unit is biosynthesized in a different part of the diatom cell, or that the isoprene chain is not assembled by the usual acetate-mevalonate pathway. The latter proposal is supported by the complete absence of deuterium retention in the isoprenoid-derived portion following incorporation of [2-13C, 2H3]-acetate.  相似文献   

2.
13C NMR study of the biosynthesis of toxins by Fusarium graminearum   总被引:2,自引:0,他引:2  
13C NMR spectroscopic investigations on the biosynthesis of mycotoxins produced by Fusarium graminearum (M69) were carried out through the incorporation of [1-13C]- and [2-13C]acetate precursors. The major secondary metabolites produced by this species in still culture were deoxynivalenol (3,7,15-trihydroxy-12,13-epoxytrichothec-9-en-one), 15-acetyldeoxynivalenol, zearalenone, and butenolide. [1-13C]- and [2-13C]acetate were incorporated in alternate carbon atoms in zearalenone, consistent with the head to tail condensation of nine acetate units. The trichothecenes were enriched in a manner consistent with the condensation of three mevalonate units. 13C/13C couplings, observed between C-5 and C-12, as well as between C-6 and C-15 of 15-acetyldeoxynivalenol, confirms the current hypothesis of formation of the trichothecene ring system by cyclization of farnesyl pyrophosphate. The incorporation pattern in ergosterol is also consistent with a mevalonate origin, while the adjacent incorporation of acetate methyl groups in butenolide suggests a glutamate precursor. The degree of enrichment in the secondary metabolites, which ranged from 3 to 10% at each carbon site, was observed in the 13C NMR spectra of the crude fungal extracts to be dependent on the timing of acetate addition to the culture. The specific toxins produced together with the quantity of each, were also found to be dependent on the timing of acetate addition. Competition between the three biosynthetic pathways of secondary metabolism, i.e. polyketide, mevalonate, and amino acid for the labeled acetate in this organism is a complex function of culture conditions.  相似文献   

3.
The 13C NMR spectra of the pheophorbide of bacteriochlorophyll c, formed in the presence of L-[1-13C]glutamate and [2-13C]glycine and [13C]bicarbonate in Prosthecochloris aestaurii, were analysed. The isotope in the glutamate was specifically incorporated into the eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid, while no specific enrichment of these eight carbon atoms was observed in the spectrum of the pigment formed in the presence of [2-13C]glycine. These labelling patterns provide evidence for the operation of the C5 pathway of 5-aminolevulinic acid synthesis for bacteriochlorophyll c formation in the bacterium. The labelling of bacteriochlorophyll c by [13C]bicarbonate is consistent with its formation from 5-[1,4,5-13C]aminolevulinic acid formed by the C5 pathway from [1,2,5-13C]glutamic acid. It is proposed that this glutamate is the transamination product of 2-[1,2,5-13C]oxoglutaric acid, arising by carboxylation of [1,4-13C]succinyl-CoA with 13CO2 catalysed by 2-oxoglutaric acid synthase activity, and that the labelled succinyl-CoA is, in turn, derived by the fixation of 13CO2 by the reductive tricarboxylic acid cycle. The 13C chemical shifts of two sp2 quaternary carbons of bacteriopheophorbide c methyl ester (C-2 and C-4) were reassigned.  相似文献   

4.
The biogenetic origin of the carbon atoms in tenellin has been established by adding 13C-enriched compounds to cultures of Beauveria bassiana, and determining the isotopic distribution in the metabolite by 13C nuclear magnetic resonance spectrometry. Tenellin is formed by condensation of an acetate-derived polyketide chain with a phenylpropanoid unit that may be phenylalanine. Alternate carbon atoms of the polyketide chain were labelled with sodium [1(-13C)]- and [2-(13C]-acetate; sodium [1,2-(13C)]acetate was incorporated as intact two-carbon units, the presence of which in tenellin was apparent from coupling between adjacent 13C-enriched carbons. Substituent methyl groups of the polyketide-derived alkenyl chain were labelled with L-[Me-13C]methionine. The labelling patterns from DL-[carboxy-13C]phenylalanine and DL-[alpha-13C]phenylalanine indicated a rearrangement of the propanoid component at some stage in the synthesis. The mass spectrum of tenellin from cultures administered L-[15N]phenylalanine showed isotopic enrichment similar to that obtained with 13C- or 14C-labelled phenylalanine. During incorporation of L-[carboxy-14C, beta-3H]phenylalanine 96% of the tritium label was lost, discounting the possibility of a 1,2-hydride shift during biosynthesis of the metabolite.  相似文献   

5.
The time courses of incorporation of 13C from 13C-labelled glucose or acetate into cerebral amino acids (glutamate, glutamine and 4-aminobutyrate) and lactate were monitored by using 13C-n.m.r. spectroscopy. When [1-13C]glucose was used as precursor the C-2 of 4-aminobutyrate was more highly labelled than the analogous C-4 of glutamate, whereas no label was observed in glutamine. A similar pattern was observed with [2-13C]glucose: the C-1 of 4-aminobutyrate was more highly labelled than the analogous C-5 of glutamate. Again, no labelling of glutamine was detected. In contrast, [2-13C]acetate labelled the C-4 of glutamine and the C-2 of 4-aminobutyrate more highly than the C-4 of glutamate; [1-13C]acetate also labelled the C-1 and C-5 positions of glutamine more than the analogous positions of glutamate. These results are consistent with earlier patterns reported from the use of 14C-labelled precursors that led to the concept of compartmentation of neuronal and glial metabolism and now provide the possibility of distinguishing differential effects of metabolic perturbations on the two pools simultaneously. An unexpected observation was that citrate is more highly labelled from acetate than from glucose.  相似文献   

6.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

7.
The preparation of leucine and isoleucine labeled with 15N and of site-specific 13C-labeled isoleucines is described. This method is based on the induction of the biosynthetic pathways specific for branched chain amino acids in glutamic acid producing bacteria, and controlled provision of stable isotope labeled precursors. Corynebacterium glutamicum (ATCC 13032), a glutamic acid overproducer, was incubated in leucine production medium which consisted of a basal medium supplemented with [15N]ammonium sulfate, glucose, and sodium alpha-ketoisocaproate. production of L-[15N]leucine reached 138 mumol/ml at an isotopic efficiency of 90%. It was purified and checked by proton NMR and GC-MS. The electron impact (EI) spectrum showed 95 atom% enrichment. The cultivation of C. glutamicum in a similar medium containing alpha-ketobutyrate yielded L-[15N]isoleucine at a concentration of 120 mumol/ml. The GC-MS EI and chemical ionization (CI) spectra confirmed enrichment of 96 atom% 15N as that of the labeled precursors. The biosynthesis of L-[13C]isoleucine was carried out by induced cells which were transferred to a similar medium in which [2-13C]- or [3-13C]pyruvic acid replaced glucose. 13C NMR of the product isoleucine revealed single-site enrichment at C-3 or at C-3' respective to the precursor [13C]pyruvate; i.e., C-3 was labeled from [2-13C]pyruvate and C-3' from [3-13C]pyruvate. Mass spectrometric analysis confirmed that all molecules were labeled only in one carbon. This site-specific incorporation of [13C]pyruvate is contrasted with the labeling pattern obtained when producing cells were supplied with [2-13C]acetate, instead of pyruvate, when most label was incorporated into carbons 3 and 3' of the same isoleucine molecule.  相似文献   

8.
Production of 6-ethyl-5-hydroxy-2,7-dimethoxy-1,4-naphthoquinone was obtained by growth of Hendersonula toruloidea on Czapek-Dox broth supplemented with malt extract. Stationary cultures were grown at 28°C for 21–22 days yielding about 6 mg of metabolite per 700 ml of culture fluid. The best incorporations of isotopic tracers were obtained by addition at the 20th day of growth, followed by harvest 24–48 hr later. With [2-14C]acetate, incorporation values were in the range of 0.1–0.3% with dilution values from 2000 to 5900. With [1-14C]propionate, incorporations were much lower (0.04%) and dilutions much higher (120,000). Activity from [14CH3]methionine was incorporated only into the OCH3 groups (incorporation values, 0.5–0.7%). Nuclear magnetic resonance studies confirmed that propionate was not a precursor. Using [1,2-13C]acetate, substantial enrichments were obtained at all carbon atoms except those of the OCH3 groups. The following pairs of carbon atoms were shown to be derived from acetate units: C-1 + 2, C-3 + 4, C-5 + 10, C-6 + 7, C-8 + 9, C-11 + 12. The biosynthetic pathway is clearly that of acetate plus polymalonate. Experiments with [2-13C2H3]acetate suggested that the “starter” acetate unit was located at positions C-12 + 11.  相似文献   

9.
Administration of (13)C labeled acetates ([1-(13)C], [2-(13)C] and [1,2-(13)C(2)] to Lasiodiplodia theobromae showed the tetraketide origins of both theobroxide, a potato-tuber inducing substance [1, (1S, 2R, 5S, 6R)-3-methyl-7-oxa-bicyclo[4.1.0]hept-3-en-2,5-diol]) and its carbonyldioxy derivative [2, (1S, 4R, 5S, 6R)-7,9-dioxa-3-methyl-8-oxobicyclo [4.3.0]-2-nonene-4,5-diol]. The incorporation of acetate-derived hydrogen into 1 and 2 was studied using [2-(2)H(3), 2-(13)C]acetate. Three and one deuterium atoms were incorporated at one methyl and epoxy carbons, respectively. The observed loss of deuterium atoms from the methyl group suggests a considerable amount of exchange from the methyl group of [2-(2)H(3), 2-(13)C]acetate during biosynthesis of 1 and 2. Incorporation of [1-(13)C]- and [1,2-(13)C(2)]acetates indicates the carbonyl carbon of the carbonyldioxy derivative is derived from the carboxy carbon of the precursor.  相似文献   

10.
Metabolism of propionate to acetate in the cockroach Periplaneta americana   总被引:2,自引:0,他引:2  
Carbon-13 NMR and radiotracer studies were used to determine the precursor to methylmalonate and to study the metabolism of propionate in the cockroach Periplaneta americana. [3,4,5-13C3]Valine labeled carbons 3, 4, and 26 of 3-methylpentacosane, indicating that valine was metabolized via propionyl-CoA to methylmalonyl-CoA and served as the methyl branch unit precursor. Potassium [2-13C]propionate labeled the odd-numbered carbons of hydrocarbons and potassium [3-13C]propionate labeled the even-numbered carbons of hydrocarbons in this insect. This labeling pattern indicates that propionate is metabolized to acetate, with carbon-2 of propionate becoming the methyl carbon of acetate and carbon-3 of propionate becoming the carboxyl carbon of acetate. In vivo studies in which products were separated by HPLC showed that [2-14C]propionate was readily metabolized to acetate. The radioactivity from sodium [1-14C]propionate was not incorporated into succinate nor into any other tricarboxylic acid cycle intermediate, indicating that propionate was not metabolized via methylmalonate to succinate. Similarly, [1-14C]propionate did not label acetate. An experiment designed to determine the subcellular localization of the enzymes involved in converting propionate to acetate showed that they were located in the mitochondrial fraction. Data from both in vivo and in vitro studies as a function of time indicated that propionate was converted directly to acetate and did not first go through tricarboxylic acid cycle intermediates. These data demonstrate a novel pathway of propionate metabolism in insects.  相似文献   

11.
The 13C-NMR spectra of bacteriochlorophyll a formed in the presence of L-[1-13C]glutamate and [2-13C]glycine in Chromatium vinosum strain D were analyzed. The isotope in the glutamate was specifically incorporated into eight carbon atoms in the tetrapyrrole macrocycle derived from the C-5 of 5-aminolevulinic acid (ALA), and the 13C in glycine was incorporated into the methyl carbon of the methoxycarbonyl group attached to the isocyclic ring of bacteriochlorophyll a. These labeling patterns provide evidence for the exclusive operation of the C5 pathway in ALA biosynthesis in the bacterium. The 13C chemical shifts of two quaternary carbons (C-9 and C-16) of bacteriochlorophyll a were reassigned in the present study.  相似文献   

12.
Because of their structures, phleic acids (general formula: CH3-(CH2)m-(CH=CH-CH2-CH2)n-CO2H; main component: m = 14, n = 5) cannot be synthesized by the same kinds of enzymatic systems as other natural polyunsaturated fatty acids. By using specifically labelled 14C compounds, we have tested the ability of different molecules to be incorporated in the phleate skeletons by Mycobacterium phlei. The localisation of radioactive carbon atoms has been studied by chemical degradation of labelled phleates, isolation and purification of the degradation products, and determination of their specific radioactivity. When M. phlei cells are incubated with labelled acetate, the unsaturated and saturated parts of the molecules of phleic acids are unequally labelled. The radioactivity of succinate monoester on the one hand and fatty acids (mixture of myristic and palmitic acids) on the other hand, measured after oxidative degradation of phleate esters, shows a constant ratio under definite conditions. Whether [1-14C]acetate or [2-14C]acetate is used for incubation, the same ratio is observed. Therefore acetate is the precursor of the unsaturated part as well as of the saturated part of the phleate molecules. By using labelled fatty acid esters, it has been found that palmitic acid is the precursor of phleates with m = 14, while myristic acid is the precursor of phleates with m = 12. Stearic and eicosanoic acids are not incorporated without degradation. The hypothesis of a condensation of a saturated fatty acid with a preformed polyunsaturated molecule was examined. Search for such a molecule in the lipids of M. phlei gives negative results. Pentaunsaturated phleate arising from palmitate is more abundant than pentaunsaturated phleate arising from myristate, while the reverse is true for hexaunsaturated phleates. These observations make very unlikely such an hypothesis. An elongation process fits well with the observed facts provided that this process involves elongation by two acetate units simultaneously, making elongation by four carbon atoms at a time. Such a requirement would be easily satisfied if two molecules of acetate are condensed together before their utilization in the elongation process. In such a hypothetical process, crotonate would be the most probable substrate of the elongation reaction.  相似文献   

13.
The 13C NMR spectra were analyzed in bacteriochlorophyll a and magnesium protoporphyrin methyl ester formed in Rhodopseudomonas spheroides S. in the presence of L-[1-13C]glutamate and [2-13C]glycine. After reassignment of three alpha-pyrrolic carbons (C-9, -14 and -16) of bacteriochlorophyll a, the spectra showed that C-2 of glycine was preferentially incorporated into the eight-carbon atoms in these tetrapyrrole macrocycles derived from C-5 of 5-aminolevulinic acid (ALA). C-2 of glycine was also incorporated specifically into methyl ester carbon of magnesium protoporphyrin IX methyl ester and methoxyl carbon of methoxycarbonyl group attached to isocyclic ring of bacteriochlorophyll a. No enrichment of these nine-carbon atoms was observed in the spectrum of bacteriochlorophyll formed in the presence of L-[1-13C]glutamate, showing exclusive operation of ALA synthase on bacteriochlorophyll biosynthesis.  相似文献   

14.
The metabolism of [1,2-13C2]acetate in rat brain was studied by in vivo and in vitro 13C NMR spectroscopy, in particular by taking advantage of the homonuclear 13C-13C spin coupling patterns. Well nourished rats were infused with [1,2-13C2]acetate or [1-13C]acetate in the jugular vein, and the in situ kinetics of 13C labeling during the infusion period was followed by 13C NMR techniques. The in vivo 13C NMR spectra showed signals from (i) the C-1 carbon of [1,2-13C2] acetate or [1-13C]acetate, (ii) 13CO3H-, and (iii) the natural abundance 13C carbons of sufficiently mobile fatty acids. Methanol/HCl/perchloric acid extracts of the brains were prepared and were further analyzed by high resolution 13C NMR. The homonuclear 13C-13C spin coupling patterns after infusion of [1,2-13C2]acetate showed very different isotopomer populations in glutamate, glutamine, and gamma-aminobutyric acid. Analyzing the relative proportions of these isotopomers revealed (i) two different glutamate compartments in the rat brain characterized by the presence and absence, respectively, of glutamine synthase activity, (ii) two different tricarboxylic acid cycles, one preferentially metabolizing [(1,2-13C2]acetate, the other mainly using unlabeled acetyl-coenzyme A, (iii) a hitherto unknown cerebral pyruvate recycling system associated with the tricarboxylic acid cycle, metabolizing primarily unlabeled acetyl-coenzyme A, and (iv) a predominant production of gamma-aminobutyric acid in the glutamate compartment lacking glutamine synthase.  相似文献   

15.
Ma JF  Nomoto K 《Plant physiology》1994,105(2):607-610
The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.  相似文献   

16.
Isotopic labelling experiments have been carried out in Datura stramonium root cultures with the following isotopically labelled precursors; [2H3]- [2-13C, 2H3]-, [1-13C, 18O2]-acetates, 2H2O, [2H3-methyl]-methionine, [2-13C]-phenyllactate, [3-2H]-tropine and [2'-13C, 3-2H]-littorine. The study explored the incorporation of isotope into the tropane ring system of littorine 1 and hyoscyamine 2 and revealed that deuterium from acetate is incorporated only into C-6 and C-7, and not into C-2 and C-4 as previously reported. Oxygen-18 was not retained at a detectable level into the C(3)-O bond from [1-13C, 18O2]-acetate. The intramolecular nature of the rearrangement of littorine 1 to hyoscyamine 2 is revealed again by a labelling study using [2'-13C, 3-2H]-littorine, [2-13C]-phenyllactate and [3-2H]-tropine.  相似文献   

17.
1. (14)C from [1-(14)C]glucose injected intraperitoneally into mice is incorporated into glutamate, aspartate and glutamine in the brain to a much greater extent than (14)C from [2-(14)C]glucose. This difference for [1-(14)C]glucose and [2-(14)C]glucose increases with time. The amount of (14)C in C-1 of glutamate increases steadily with time with both precursors. It is suggested that a large part of the glutamate and aspartate pools in brain are in close contact with intermediates of a fast-turning tricarboxylic acid cycle. 2. (14)C from [1-(14)C]acetate and [2-(14)C]acetate is incorporated to a much larger extent into glutamine than into glutamate. An examination of the time-course of (14)C incorporated into glutamine and glutamate reveals that glutamine is not formed from the glutamate pool, labelled extensively by glucose, but from a small glutamate pool. This small glutamate pool is not derived from an intermediate of a fast-turning tricarboxylic acid cycle. 3. It is proposed that two different tricarboxylic acid cycles exist in brain.  相似文献   

18.
In methanogenic environments, the main fate of benzoate is its oxidization to acetate, H(2) and CO(2) by syntrophic associations of hydrogen-producing benzoate degraders and hydrogen-using methanogens. Here, we report the use of benzoate as an electron acceptor. Pure cultures of S. aciditrophicus simultaneously degraded crotonate and benzoate when both substrates were present. The growth rate was 0.007 h(-1) with crotonate and benzoate present compared with 0.025 h(-1) with crotonate alone. After 8 days of incubation, 4.12 +/- 0.50 mM of cyclohexane carboxylate and 8.40 +/- 0.61 mM of acetate were formed and 4.0 +/- 0.04 mM of benzoate and 4.8 +/- 0.5 mM of crotonate were consumed. The molar growth yield was 22.7 +/- 2.1 g (dry wt) of cells per mol of crotonate compared with about 14.0 +/- 0.1 g (dry wt) of cells per mol of crotonate when S. aciditrophicus was grown with crotonate alone. Cultures grown with [ring-(13)C]-benzoate and unlabelled crotonate initially formed [ring-(13)C]-labelled cyclohexane carboxylate. No (13)C-labelled acetate was detected. In addition to cyclohexane carboxylate, (13)C-labelled cyclohex-1-ene carboxylate was detected as an intermediate. Once almost all of the benzoate was gone, carbon isotopic analyses showed that cyclohexane carboxylate was formed from both labelled and non-labelled metabolites. Glutarate and pimelate were also detected at this time and carbon isotopic analyses showed that each was made from a mixture labelled and non-labelled metabolites. The increase in molar growth yield with crotonate and benzoate and the formation of [ring-(13)C]-cyclohexane carboxylate from [ring-(13)C]-benzoate in the presence of crotonate are consistent with benzoate serving as an electron acceptor.  相似文献   

19.
13C enrichments at C-3, C-4, C-5 and C-6 of canthin-6-one from cell cultures of Ailanthus altissima supplemented with [1-13C], [2-13C] and [1,2-13C] acetate, give evidence of the involvement of ketoglutarate as an intact precursor in the biosynthetic pathway.  相似文献   

20.
The amino acid leucine is efficiently used by the trypanosomatid Leishmania mexicana for sterol biosynthesis. The incubation of [2-(13)C]leucine with L. mexicana promastigotes in the presence of ketoconazole gave 14alpha-methylergosta-8,24(24(1))-3beta-ol as the major sterol, which was shown by mass spectrometry to contain up to six atoms of (13)C per molecule. (13)C NMR analysis of the 14alpha-methylergosta-8,24(24(1))-3beta-ol revealed that it was labeled in only six positions: C-2, C-6, C-11, C-12, C-16, and C-23. This established that the leucine skeleton is incorporated intact into the isoprenoid pathway leading to sterol; it is not converted first to acetyl-CoA, as in animals and plants, with utilization of the acetyl-CoA to regenerate 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). An inhibitor of HMG-CoA synthase (L-659,699) blocked the incorporation of [1-(14)C]acetate into sterol but had no inhibitory effect on [U-(14)C]leucine incorporation. The HMG-CoA reductase inhibitor lovastatin inhibited promastigote growth and [U-(14)C]leucine incorporation into sterol. The addition of unlabeled mevalonic acid (MVA) overcame the lovastatin inhibition of growth and also diluted the incorporation of [1-(14)C]leucine into sterol. These results are compatible with two routes by which the leucine skeleton may enter intact into the isoprenoid pathway. The catabolism of leucine could generate HMG-CoA that is then directly reduced to MVA for incorporation into sterol. Alternatively, a compound produced as an intermediate in leucine breakdown to HMG-CoA (e.g. dimethylcrotonyl-CoA) could be directly reduced to produce an isoprene alcohol followed by phosphorylation to enter the isoprenoid pathway post-MVA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号