首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calsequestrin has been precipitated with calcium into five different crystal forms: cruciform twins, flat rectangles, thin needles, bipyramids, rectangular prisms, and a sixth precrystalline form, spheres. Raman spectra of the spheres and the cruciform twins are the same. The Raman spectrum of a physiological concentration (10%) of calsequestrin in calcium-free solution is the same as the spectrum of calcium precipitated calsequestrin in the amide I region, and in the C-C stretching region, but these spectra are different in the amide III region. The Raman spectrum of unfolded calsequestrin in 5 M guanidine hydrochloride is quite different from the other spectra, but it is not similar to the spectra of other unfolded proteins. Estimates of secondary structure from the amide I region indicate that calsequestrin in calcium-free solution and calcium-precipitated forms has 40 +/- 5% helix, 30 +/- 4% beta-strand, and 18 +/- 2% reverse turn. Secondary structure estimates calculated from the amide III region are not significantly different. They indicate 41 +/- 5% helix and 36 +/- 6% beta-strand for the precipitated forms, and 32 +/- 5% helix and 39 +/- 6% beta-strand for solutions. Calsequestrin unfolded in 5 M guanidine hydrochloride at 100 mg/ml gives 24 +/- 5% helix and 48 +/- 6% beta-strand.  相似文献   

2.
Raman spectra have been measured of the following samples: active calcium pump protein in light sarcoplasmic reticulum (SR) membranes, lipids extracted from light SR membranes, active calcium pump protein reconstituted in dielaidoylphosphatidylcholine (DEPC), and pure DEPC. The spectra of native SR lipids and of pure DEPC are different, and yet when these spectra are subtracted from the spectra of the respective protein-lipid complexes, the resulting amide I spectra of the calcium pump protein are the same, indicating that appropriate criteria have been chosen for subtraction of the spectrum of a lipid. This spectrum has been analyzed for secondary structure with the following results. The SR calcium pump protein contains 51 +/- 5% helix, in agreement with a prediction of secondary structure obtained from an analysis of the sequence, and 21 +/- 4% beta-strand. In addition, the presence of protein broadens and lowers the main melting transition of DEPC.  相似文献   

3.
Raman spectroscopy was employed to examine the secondary structure of the cAMP receptor protein (CRP). Spectra were obtained over the range 400-1900 cm-1 from solutions of CRP and from CRP-cAMP cocrystals. The spectra of CRP dissolved in 30 mM sodium phosphate and 0.15 M NaCl buffered at either pH 6 or pH 8 or dissolved in 0.15-0.2 M NaCl at protein concentrations of 5, 15, and 30 mg/mL were examined. Estimates of the secondary structure distribution were made by analyzing the amide I region of the spectra (1630-1700 cm-1). CRP secondary structure distributions were essentially the same in either pH and at all protein concentrations examined. The amide I analyses indicated a structural distribution of 44% alpha-helix, 28% beta-strand, 18% turn, and 10% undefined for CRP in solution. Raman spectra of CRP-cAMP cocrystals differed from the spectra of CRP in solution. Some differences were assigned to interfering background bands, whereas other spectral differences were attributed to changes in CRP structure. Differences in the amide III region and in the intensity at 935 cm-1 were consistent with alterations in secondary structure. Analysis of the amide I region of the CRP-cAMP cocrystal spectrum indicated a secondary structure distribution of 37% alpha-helix, 33% beta-strand, 17% turn, and 12% undefined. This result is in agreement with a published secondary structure distribution derived from X-ray analysis of CRP-cAMP cocrystals (37% alpha-helix and 36% beta-strand).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A new method for estimating protein secondary structure from the laser Raman spectrum has been developed whereby the amide I Raman band of a protein is analyzed directly as a linear combination of amide I bands of proteins whose secondary structures are known. For 14 proteins, analyzed by removing each one from the reference set and analyzing its structure in terms of the remaining proteins, the average correlation coefficients between the Raman and X-ray diffraction estimates of helix, beta-strand, turn, and undefined were 0.98, 0.98, 0.82 and 0.35, respectively. Significant correlations were also observed for distinctions between alpha-helix (0.98) and disordered helix (0.82), and between parallel (0.82) and antiparallel (0.97) beta-sheets. The average standard deviation of these Raman estimates from the X-ray values is less than 4%. In addition, a singular value analysis of 20 Raman amide I spectra indicates that there may be as many as nine significant independent pieces of information present in the amide I region.  相似文献   

5.
We have used a combination of FTIR, VCD, ECD, Raman, and NMR spectroscopies to probe the solution conformations sampled by H-(AAKA)-OH by utilizing an excitonic coupling model and constraints imposed by the 3JCalphaHNH coupling constants of the central residues to simulate the amide I' profile of the IR, isotropic Raman, anisotropic Raman, and VCD spectra in terms of a mixture of three conformations, i.e., polyproline II, beta-strand and right-handed helical. The representative coordinates of the three conformations were obtained from published coil libraries. Alanine was found to exhibit PPII fractions of 0.60 or greater, mixed with smaller fractions of helices and beta-strand conformations. Lysine showed no clear conformational propensity in that it samples polyproline II, beta-strand, and helical conformations with comparable probability. This is at variance with results obtained earlier for ionized polylysine, which suggest a high polyproline II propensity. We reanalyzed previously investigated tetra- and trialanine by combining published vibrational spectroscopy data with 3JCalphaHNH coupling constants and obtained again blends dominated by PPII with smaller admixtures of beta-strand and right-handed helical conformations. The polyproline II propensity of alanine was found to be higher in tetraalanine than in trialanine. For all peptides investigated, our results rule out a substantial population of turn-like conformations. Our results are in excellent agreement with MD simulations on short alanine peptides by Gnanakaran and Garcia [(2003) J. Phys. Chem. B 107, 12555-12557] but at variance with multiple MD simulations particularly for the alanine dipeptide.  相似文献   

6.
Ultraviolet resonance Raman spectroscopy (UVRR) in combination with a nanosecond temperature jump (T-jump) was used to investigate early steps in the temperature-induced alpha-helix to beta-sheet conformational transition of poly(L-lysine) [poly(K)]. Excitation at 197 nm from a tunable frequency-quadrupled Ti:sapphire laser provided high-quality UVRR spectra, containing multiple conformation-sensitive amide bands. Although un-ionized poly(K) (pH 11.6) is mainly alpha-helical below 30 degrees C, there is a detectable fraction (approximately 15%) of unfolded polypeptide, which is mainly in the poly(L-proline) II (PPII) conformation. However, deviations from the expected amide I and II signals indicate an additional conformation, suggested to be beta-strand. Above 30 degrees C un-ionized poly(K) forms a beta-sheet at a rate (minutes) which increases with increasing temperature. A 22-44 degrees C T-jump is accompanied by prompt amide I and II difference signals suggested to arise from a rapid shift in the PPII/beta-strand equilibrium. These signals are superimposed on a subsequently evolving difference spectrum which is characteristic of PPII, although the extent of conversion is low, approximately 2% at the 3 micros time limit of the experiment. The rise time of the PPII signals is approximately 250 ns, consistent with melting of short alpha-helical segments. A model is proposed in which the melted PPII segments interconvert with beta-strand conformation, whose association through interstrand H-bonding nucleates the formation of beta-sheet. The intrinsic propensity for beta-strand formation could be a determinant of beta-sheet induction time, with implications for the onset of amyloid diseases.  相似文献   

7.
The amide I band in the laser Raman spectrum of proteins has been resolved into six components, each representing residues in a different type of secondary structure. These structure types are ordered or bihydrogen-bonded helix (believed to be located in the center of helical segments), disordered or monohydrogen-bonded helix (believed to be located at the ends of helical segments), antiparallel beta sheet, parallel beta sheet, reverse turn, and undefined. The Raman spectrum representing 100% of each type of residue conformation has been computed from the solvent-subtracted Raman spectra of ten proteins with known secondary structure, plus poly-l-lysine using a least-squares solution of the overdetermined system of equations. Linear combinations of these reference spectra were then fitted to the experimental amide I spectra of these and other proteins to estimate the fractions of residues in these conformations. Statistical tests suggest that the discrimination between bihydrogen-bonded helix and monohydrogen-bonded helix is significant as is the discrimination between parallel and antiparallel β-sheet. However, the discrimination between random structure and turns has not yet been accomplished by these studies. The absolute difference between X-ray and Raman estimates of structure for 17 protein samples is generally less than 6%. We conclude that detailed and reasonably accurate estimates of secondary structure can be derived from the amide I spectra of proteins.  相似文献   

8.
A constrained, iterative Fourier deconvolution method is employed to enhance the resolution of Raman spectra of biological molecules for quantitative assessment of macromolecular secondary structures and hydrogen isotope exchange kinetics. In an application to the Pf1 filamentous bacterial virus, it is shown that the Raman amide I band contains no component other than that due to alpha-helix, indicating the virtual 100% helicity of coat proteins in the native virion. Comparative analysis of the amide I band of six filamentous phages (fd, If1, IKe, Pf1, Xf, and Pf3), all at the same experimental conditions, indicates that the subunit helix-percentage ranges from a high of 100% in Pf1 to a low of 71% in Xf. Deconvolution of amide I of Pf3 at elevated temperatures, for which an alpha-to-beta transition was previously reported (Thomas, G. J., Jr., and L. A. Day, 1981, Proc. Natl. Acad. Sci. USA., 78:2962-2966), allows quantitative evaluation of the contributions of both alpha-helix and beta-strand conformations to the structure of the thermally perturbed viral coat protein. Weak Raman lines of viral DNA bases and coat protein side chains, which are poorly resolved instrumentally, are also distinguished for all viruses by the deconvolution procedure. Application to the carbon-8 hydrogen isotope exchange reaction of a purine constituent of transfer RNA permits accurate determination of the exchange rate constant, which is in agreement with calculations based upon curve-fitting methods.  相似文献   

9.
The histone-like protein HU of Bacillus stearothermophilus (HUBst) is a 90-residue homodimer that binds nonspecifically to B DNA. Although the structure of the HUBst:DNA complex is not known, the proposed DNA-binding surface consists of extended arms that project from an alpha-helical platform. Here, we report Raman and ultraviolet-resonance Raman (UVRR) spectra diagnostic of subunit secondary structures and indicative of key side-chains lining the proposed DNA-binding surface. Raman conformation markers show that the DNA-binding arms of the dimer contain beta-stranded structure in excess (eight +/- two residues per subunit) of that reported previously. Important among side-chain markers are Met (701 cm(-1)), Ala (908 cm(-1)), Arg (1082 cm(-1)), and Pro (1457 cm(-1)). The Ala marker undergoes a substantial shift (908 --> 893 cm(-1)) on deuteration of alanyl peptide sites, indicating a coupled side-chain/main-chain mode of diagnostic value in the identification of exchange-protected alanines. A large subset of alanines (67%) in the alpha-helical core exhibits robust resistance to exchange. A quantitative study of NH --> ND exchange exploiting newly identified amide II' markers of helical (1440 cm(-1)) and nonhelical (1472 cm(-1)) conformations of HUBst indicates unexpected flexibility at the dimer interface, which is manifested in rapid exchange of 80% of peptide sites. The results establish a basis for subsequent Raman and UVRR investigations of HUBst:DNA complexes and provide a framework for applications to other DNA-binding architectural proteins.  相似文献   

10.
Laser Raman spectroscopy has been employed to investigate structures of the lambda repressor N-terminal fragment, which recognizes operator DNA. Examination of repressor fragments containing deuterated amide groups and specifically labeled deuteriotyrosines has enabled the assignment of many of the conformation-sensitive Raman bands. By use of Fourier deconvolution and signal averaging techniques, the spectra of both wild-type and mutant sequences have been obtained as a function of the total protein concentration in aqueous solution over the range 5-100 mg/mL. This analysis has permitted monitoring of the monomer-dimer association of the repressor fragment and determination of the effects of dimerization upon individual side-chain interactions and main-chain secondary structure. The spectra are interpreted to reveal the hydrogen-bonding environments of four tyrosines of the N-terminal fragment (Y22, Y60, Y85, and Y88). The fifth tyrosine (Y101) is known from NMR experiments to be exposed to solvent molecules. The results show that in the dimer Y22 and Y85 are each acceptors of a strong hydrogen bond from a positive donor group, while Y88 is the donor of a strong hydrogen bond to a negative acceptor and Y60, like Y101, is involved in both a donor role and an acceptor role. Y60, Y85, and Y88, which are all near the dimer interface, undergo a collective change in hydrogen-bonding environment with dissociation of the dimer. The net effect of this change is the conversion of one acceptor tyrosine, deduced to be Y88, to a combined donor and acceptor role. The Raman results also indicate a predominantly alpha-helical structure for the N-terminal fragment in aqueous solution, with 70 +/- 4% of the residues incorporated into helical domains. The amount of alpha-helix determined from the Raman spectrum is consistent with X-ray and prediction results and is altered neither by the mutations C85----Y85 and C88----Y88 nor by dissociation of the dimer.  相似文献   

11.
Raman spectra of gp5 and complexes of gp5 with poly(rA) and poly(dA) have been determined and analysed. From a fit of the amide I-band with model spectra it follows that the secondary structure of gp5 contains 52% beta-sheet, 28% undefined conformation and 19% alpha-helix. The band at 1032 cm-1 due to phenylalanine has an anomalous intensity both in the spectra of the complexes and the free protein. This possibly indicates a stacked structure present in the protein. Binding of gp5 to poly(rA) and poly(dA) influences the intensity of bands near 1338 and 1480 cm-1 which are considered to be marker-bands for the phosphate-sugar-base conformer. A change in conformation of the nucleotides is also reflected by vibrations originating in the phosphate- and sugar-residues of the backbone. In the spectrum of complexed poly(rA) the intensity of the conformation sensitive band at 813 cm-1, which is due to the phosphodiester group, is zero. It seems that gp5 forces poly(rA) and poly(dA) to a similar conformation. A marker band for stacking interaction in poly(rA) indicates that stacking interactions in the complex have increased.  相似文献   

12.
The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694], appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase [Sachsenheimer, W., & Schulz, G.E. (1977) J. Mol. Biol. 114, 23-26], with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of beta-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% alpha-helix, 38% beta-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possibly due to disorder, it can be fit by using methods developed on well-characterized globular proteins. On this basis, the peptide consists of 35 +/- 10% beta-structure, 60 +/- 12% turns and aperiodic structure, and not more than 10% alpha-helix. The CD spectrum is best fit by assuming the presence of at most 13% alpha-helix in the peptide, 24 +/- 2% beta-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformational changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assessed by CD. Detailed assignments of resonances in the peptide spectrum and intermolecular NOEs between protons of bound MgATP and those of the peptide, as well as chemical shifts of peptide resonances induced by the binding of MgATP, are consistent with the previously proposed binding site for MgATP on adenylate kinase.  相似文献   

13.
Tsuboi M  Suzuki M  Overman SA  Thomas GJ 《Biochemistry》2000,39(10):2677-2684
Raman spectra of oriented alpha-helical protein molecules exhibit a prominent band near 1340-1345 cm(-)(1), the intensity of which is highly sensitive to molecular orientation. Polarization of the 1340-1345 cm(-)(1) marker is evident in Raman spectra of alpha-helical poly-L-alanine (alphaPLA) and alpha-helical poly-gamma-benzyl-L-glutamate (alphaPBLG). Corresponding polarization is also observed in Raman spectra of the filamentous virus Pf1, which is an assembly of alpha-helical coat protein molecules. In alphaPLA and alphaPBLG, we assign the band to a normal mode of symmetry type E(2) and specifically to a vibration localized in the (O=C)-C(alpha)-H linkages of the main chain peptide group. Although strict helical symmetry does not apply to coat subunits of filamentous viruses, an approximate E(2)-type mode may be presumed to account for a corresponding Raman band of Pf1 and fd filamentous viruses. Spectroscopic studies of N-methylacetamide and isotopically-edited fd viruses support the present assignment of the 1340-1345 cm(-)(1) band. Polarization anisotropy indicates that this band may be exploited as a novel indicator of protein alpha-helix orientation. Application of this approach to the polarized Raman spectrum of Pf1 suggests that, on average, the axis of the alpha-helical coat protein subunit in the native virion structure forms an angle of 20 +/- 10 degrees with respect to the virion axis.  相似文献   

14.
The Raman spectra of collagen, gelatin, and elastin are presented. The Raman lines in the latter two spectra are assigned by deuterating the amide N-H groups in gelatin and by studying the superposition spectra of the constituent amino acids. Two lines appear at 1271 and 1248 cm?1 in the spectra of collagen and gelatin that can be assigned to the amide III mode. Possibly, the appearance of two amide III lines is related to the biphasic nature of the tropocollagen molecule, i.e., proline-rich (nonpolar) and proline-poor (polar) regions distributed along the chain. The melting, or collagen-to-gelatin transition, in water-soluble calf skin collagen is studied and the 1248-cm?1 amide III line is assigned to the 31 helical regions of the tropocollagen molecule. Elastin is thought to be mostly random and the Raman spectrum confirms this assertion. Strong amide I and III lines appear at 1668 and 1254 cm?1, respectively, and only weak scattering is observed at 938 cm?1. These features have been shown to be characteristic of the disordered conformation in proteins.  相似文献   

15.
The Raman spectrum of poly-DL -alanine (PDLA) in the solid state is interpreted in terms of the disordered chain conformation, in analogy with the spectrum of mechanically deformed poly-L -alanine. The polymer is largely disordered with only a small α-helical content in the solid state. When PDLA is dissolved in water, the spectra suggest that short α-helical segments are formed upon dissolution. These helical regions might be stabilized by hydrophobic bonds between side-chain methyl groups. Addition of methanol to the aqueous PDLA solutions results in a Raman spectrum resembling that of solid PDLA. This result suggests that the methanol disrupts the helical regions by breaking the hydrophobic bonds. The Raman spectra of poly-DL -leucine (PDLL) and poly-L -leucine (PLL) are compared and only slight differences are observed in the amide I and III regions, indicating that PDLL does not have an appreciable disordered chain content. Significant differences are observed in the skeletal regions. The 931-cm?1 lines in the PLL and PDLL spectra are assigned to residues in α-helical segments of the preferred screw sense, i.e., L -residues in right-handed segments and D -residues in left-handed segments (in PDLL). On the other hand, the 890-cm?1 line in the spectrum of PDLL is assigned to residues not in the preferred helical sence, i.e., L -residues in left-handed segments and D -residues in right-handed ones. The Raman spectra of poly-DL -lysine and poly-L -lysine in salt-free water at pH 7.0 are compared. The Raman spectra of the two polymers are very similar. However, this does not negate the hypothesis of local order in poly-L -lysine because the distribution of the residues in poly-DL -lysine probably tends towards blocks, and the individual blocks may take up the 31 helix.  相似文献   

16.
Z Chi  S A Asher 《Biochemistry》1999,38(26):8196-8203
We have used UV resonance Raman spectroscopy to study the acid-induced denaturation of horse apomyoglobin (apoMb) between pH 7. 0 and 1.8. The 206.5 nm excited Raman spectra are dominated by amide vibrations, which are used to quantitatively determine the apoMb secondary structure. The 229 nm excited Raman spectra are dominated by the Tyr and Trp Raman bands, which are analyzed to examine changes of Tyr and Trp environments and solvent exposures. We observe two partially unfolded apoMb intermediates at pH 4 and pH 2, while we observe only one partially unfolded holoMb intermediate at 2, in which the G and H helices are mainly intact, while the rest of protein is unfolded. This partially unfolded holoMb intermediate at pH 2 is essentially identical to the pH 2 apoMb intermediate. The partially unfolded pH 4 apoMb intermediate is composed of the three folded A, G, and H helices and contains 38% helical structure. The changes in the Trp Raman cross sections during the acid-induced denaturation indicates that Trp 7 is likely to be fully exposed in the apoMb pH 4 intermediate and that the A helix melts with a pKa approximately 3.5.  相似文献   

17.
The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between (-) 10 and 5 degrees C (low-temperature transition), 10 and 22 degrees C (middle-temperature transition), and 32 and 40 degrees C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14 degrees C). Second, the middle-temperature transition shifts up to the range of about 20-32 degrees C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of about 15-40 degrees C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties.  相似文献   

18.
The polarized Raman spectra of glycerinated and intact single muscle fibers of the giant barnacle were obtained. These spectra show that the conformation-sensitive amide I, amide III, and C-C stretching vibrations give Raman bands that are stronger when the electric field of both the incident and scattered radiation is parallel to the fiber axis (Izz). The detailed analysis of the amide I band by curve fitting shows that approximately 50% of the alpha-helical segments of the contractile proteins are oriented along the fiber axis, which is in good agreement with the conformation and composition of muscle fiber proteins. Difference Raman spectroscopy was also used to highlight the Raman bands attributed to the oriented segments of the alpha-helical proteins. The difference spectrum, which is very similar to the spectrum of tropomyosin, displays amide I and amide III bands at 1,645 and 1,310 cm-1, respectively, the bandwidth of the amide I line being characteristic of a highly alpha-helical biopolymer with a small dispersion of dihedral angles. A small dichroic effect was also observed for the band due to the CH2 bending mode at 1,450 cm-1 and on the 1,340 cm-1 band. In the C-C stretching mode region, two bands were detected at 902 and 938 cm-1 and are both assigned to the alpha-helical conformation.  相似文献   

19.
Raman spectroscopy has been used in investigating the conformational transitions of poly-L -alanine (PLA) induced by mechanical deformation. We see evidence of the alpha-helical, antiparallel beta-sheet, and a disordered conformation in PLA. The disordered conformation has not been discussed in previous infrared and X-ray diffraction investigations and may have local order similar to the left-handed 31 poly glycine helix. The amide III mode in the Raman spectrum of PLA is more sensitive than the amide I and II modes to changes in secondary structure of the polypeptide chain. Several lines below 1200 cm?1 are conformationally sensitive and may generally be useful in the analysis of Raman spectra of proteins. A line at 909 cm?1 decreases in intensity after deformation of PLA. In general only weak scattering is observed around 900 cm?1 in the Raman spectra of antiparallel beta-sheet polypeptides. The Raman spectra of the amide N–H deuterated PLA and poly-L -leucine (PLL) in the alpha-helical conformation and poly-L -valine (PLV) in the beta-sheet conformation are presented. Splitting is observed in the amide III mode of PLV and the components of this mode are assigned. The Raman spectrum of an alpha-helical random copolymer of L -leucine and L -glutamic acid is shown to be consistent with the spectra of other alphahelical polypeptides.  相似文献   

20.
delta 5-3-Ketosteroid isomerase (KSI: EC 5.3.3.1) of Pseudomonas testosteroni catalyzes the isomerization of delta 5-3-ketosteroids to delta 4-3-ketosteroids by the stereospecific transfer of the steroid 4 beta-proton to the 6 beta-position, using Tyr-14 as a general acid and Asp-38 as a base. Ultraviolet resonance Raman (UVRR) spectra have been obtained for the catalytically active double mutant Y55F + Y88F, which retains Tyr-14 as the only tyrosine residue (referred to as the Y14(0) mutant), and the Y14F mutant, which has 50,000-fold lower activity. The UVRR results establish that binding of the product analog and competitive inhibitors 19-nortestosterone or 4-fluoro-19-nortestosterone to the Y14(0) mutant does not result in the formation of deprotonated Tyr-14. The UVRR spectra of the steroid inhibitors show large decreases in the vinyl and carbonyl stretching frequencies on binding to the Y14(0) enzyme but not on binding to the Y14F enzyme. These changes cannot be mimicked by protonation of the steroids. For 19-nortestosterone, the vinyl and carbonyl stretching frequencies shift down (with respect to the values in aqueous solution) by 18 and 27 cm-1, respectively, on binding to Y14(0) KSI. It is proposed that the changes in the steroid resonance Raman spectrum arise from polarization of the enone moiety via the close proximity of the charged Asp-38 side chain to the vinyl group and the directional hydrogen bond between Tyr-14 and the 3-carbonyl oxygen of the steroid enone. The 230-nm-excited UVRR spectra do not, however, show changes that are characteristic of strong hydrogen bonding from the tyrosine hydrogen. It is proposed that this hydrogen bonding is compensated by a second hydrogen bond to the Tyr-14 oxygen from another protein residue. UVRR spectra of the Y14(0) enzyme obtained using 200 nm excitation show enhancement of the amide II and S Raman bands. The secondary structure of KSI was estimated from the amide II and S intensities and was found to be low in alpha-helical structure. The alpha-helix content was estimated to be in the range of 0-25% (i.e., 10 +/- 15%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号