首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccinia DNA topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a specific target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrow N(-1) in duplex DNA. Here we study the effects of position-specific DNA intercalators on the rate and extent of single-turnover DNA transesterification. Chiral C-1 R and S trans-opened 3,4-diol 1,2-epoxide adducts of benzo[c]phenanthrene (BcPh) were introduced at single N2-deoxyguanosine and N6-deoxyadenosine positions within the 3'-G(+5)G(+4)G(+3)A(+2)A(+1)T(-1)A(-2) sequence of the nonscissile DNA strand. Transesterification was unaffected by BcPh intercalation between the +6 and +5 base pairs, slowed 4-fold by intercalation between the +5 and +4 base pairs, and virtually abolished by BcPh intercalation between the +4 and +3 base pairs and the +3 and +2 base pairs. Intercalation between the +2 and +1 base pairs by the +2R BcPh dA adduct abolished transesterification, whereas the overlapping +1S BcPh dA adduct slowed the rate of transesterification by a factor of 2700, with little effect upon the extent of the reaction. Intercalation at the scissile phosphodiester (between the +1 and -1 base pairs) slowed transesterification by a factor of 450. BcPh intercalation between the -1 and -2 base pairs slowed cleavage by two orders of magnitude, but intercalation between the -2 and -3 base pairs had little effect. The anthracycline drug nogalamycin, a non-covalent intercalator with preference for 5'-TG dinucleotides, inhibited the single-turnover DNA cleavage reaction of vaccinia topoisomerase with an IC50 of 0.7 microM. Nogalamycin was most effective when the drug was pre-incubated with DNA and when the cleavage target site was 5'-CCCTT/G instead of 5'-CCCTT/A. These findings demarcate upstream and downstream boundaries of the functional interface of vaccinia topoisomerase with its DNA target site.  相似文献   

2.
DB921 and DB911 are benzimidazole-biphenyl isomers with terminal charged amidines. DB911 has a central meta-substituted phenyl that gives it a shape similar to those of known minor groove binding compounds. DB921 has a central para-substituted phenyl with a linear conformation that lacks the appropriate radius of curvature to match the groove shape. It is thus expected that DB911, but not DB921, should be an effective minor groove binder, but we find that DB921 not only binds in the groove but also has an unusually high binding constant in SPR experiments (2.9 x 10(8) M(-)(1), vs 2.1 x 10(7) M(-)(1) for DB911). ITC thermodynamic analysis with an AATT sequence shows that the stronger binding of DB921 is due to a more favorable binding enthalpy relative to that of DB911. CD results support minor groove binding for both compounds but do not provide an explanation for the binding of DB921. X-ray crystallographic analysis of DB921 bound to AATT shows that an induced fit structural change in DB921 reduces the twist of the biphenyl to complement the groove, and places the functional groups in position to interact with bases at the floor of the groove. The phenylamidine of DB921 forms indirect contacts with the bases through a bound water. The DB921-water pair forms a curved binding module that matches the shape of the minor groove and provides a number of strong interactions that are not possible with DB911. This result suggests that traditional views of compound curvature required for minor groove complex formation should be reevaluated.  相似文献   

3.
The non-steroidal anti-estrogen tamoxifen [TAM] has been in clinical use over the last two decades as a potent adjunct chemotherapeutic agent for treatment of breast cancer. It has also been given prophylactically to women with a strong family history of breast cancer. However, tamoxifen treatment has also been associated with increased endometrial cancer, possibly resulting from the reaction of metabolically activated tamoxifen derivatives with cellular DNA. Such DNA adducts can be mutagenic and the activities of isomeric adducts may be conformation-dependent. We therefore investigated the high resolution NMR solution conformation of one covalent adduct (cis-isomer, S-epimer of [TAM]G) formed from the reaction of tamoxifen [TAM] to N(2)-of guanine in the d(C-[TAM]G-C).d(G-C-G) sequence context at the 11-mer oligonucleotide duplex level. Our NMR results establish that the S-cis [TAM]G lesion is accomodated within a widened minor groove without disruption of the Watson-Crick [TAM]G. C and flanking Watson-Crick G.C base-pairs. The helix axis of the bound DNA oligomer is bent by about 30 degrees and is directed away from the minor groove adduct site. The presence of such a bulky [TAM]G adduct with components of the TAM residue on both the 5'- and the 3'-side of the modified base could compromise the fidelity of the minor groove polymerase scanning machinery.  相似文献   

4.
DNA topoisomerases II are nuclear enzymes that have been identified recently as targets for some of the most active anticancer drugs. Antitumor topoisomerase II inhibitors such as teniposide (VM-26) produce enzyme-induced DNA cleavage and inhibition of enzyme activity. By adding to such reactions distamycin, a compound whose effects on DNA have been extensively characterized, we investigated the effects of drug binding upon topoisomerase II-mediated DNA cleavage induced by VM-26. We have found a correspondence between distamycin binding (determined by footprinting analysis) and topoisomerase II-mediated cleavage of SV40 DNA (determined by sequencing gel analysis). Distamycin binding potentiated the cleavage of specific sites in the near proximity of distamycin-binding sites (within at least 25 base pairs), which indicates that DNA secondary structure is involved in topoisomerase II-DNA interactions. That distamycin potentiated cleavage only at sites that were recognized in the absence of distamycin and suppressed cleavage directly at distamycin-binding sites indicates that topoisomerase II recognizes DNA on the basis of primary sequence. In addition, distamycin stimulated topoisomerase II-mediated DNA relaxation and antagonized the inhibitory effect of VM-26. These results show that the DNA sequence-specific binding of distamycin produces local and propagated effects in the DNA which markedly affect topoisomerase II activity.  相似文献   

5.
We present titrations of the human δβ-globin gene region with DNA minor groove binders netropsin, bisnetropsin, distamycin, chromomycin and four bis-quaternary ammonium compounds in the presence of calf thymus topoisomerase II and DNase I. With increasing ligand concentration, stimulation and inhibition of enzyme activity were detected and quantitatively evaluated. Additionally we show a second type of stimulation, the appearance of strong new topoisomerase II cleavage sites at high ligand concentrations. The specific binding sites of the minor groove binders of the DNA sequence and their microscopic binding constants were determined from DNase I footprints. A binding mechanism for minor groove binders is proposed in order to explain these results especially when ligand concentration is increased. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Benzo[a]pyrene-7,8-quinone (BPQ) is one of the reactive metabolites of the widely distributed archetypal polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P). The formation of BPQ from B[a]P through trans-7,8-dihydroxy-7,8-dihydroB[a]P by the mediation of aldo-keto reductases and its role in the genotoxicity and carcinogenesis of B[a]P currently are under extensive investigation. Toxicity pathways related to BPQ are believed to include both stable and unstable (depurinating) DNA adduct formation as well as reactive oxygen species. We previously reported the complete characterization of four novel stable BPQ-deoxyguanosine (dG) and two BPQ-deoxyadenosine (dA) adducts (Balu et al., Chem. Res. Toxicol. 17 (2004) 827-838). However, the identification of BPQ-DNA adducts by 32P postlabeling methods from in vitro and in vivo exposures required 3'-monophosphate derivatives of BPQ-dG, BPQ-dA, and BPQ-deoxycytidine (dC) as standards. Therefore, in the current study, BPQ adducts of dGMP(3'), dAMP(3'), and dCMP(3') were prepared. The syntheses of the BPQ-3'-mononucleotide standards were carried out in a manner similar to that reported previously for the nucleoside analogs. Reaction products were characterized by UV, LC/MS analyses, and one- and two-dimensional NMR techniques. The spectral studies indicated that all adducts existed as diastereomeric mixtures. Furthermore, the structural identities of the novel BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adducts were confirmed by acid phosphatase dephosphorylation of the BPQ-nucleotide adducts to the corresponding known BPQ-nucleoside adduct standards. The BPQ-dGMP, BPQ-dAMP, and BPQ-dCMP adduct standards were used in 32P postlabeling studies to identify BPQ adducts formed in vitro with calf thymus DNA and DNA homopolymers. 32P postlabeling analysis revealed the formation of 8 major and at least 10 minor calf thymus DNA adducts. Of these BPQ-DNA adducts, the following were identified: 1 BPQ-dGMP adduct, 2 BPQ-dAMP adducts, and 3 BPQ-dCMP adducts. This study represents the first reported example of the characterization of stable BPQ-DNA adducts in isolated mammalian DNA and is expected to contribute significantly to the future BPQ-DNA adduct studies in vivo and thereby to the contribution of BPQ in B[a]P carcinogenesis.  相似文献   

8.
In vitro interactions of benzo[a]pyrene (BaP) with acid-soluble type I collagen from rat tail tendon have been investigated. The fluorescence of BaP increases in the presence of collagen. Bound BaP inhibits the formation of collagen fibrils in solution. When BaP-collagen complexes are irradiated in air with UV (365 nm) light, BaP rapidly undergoes photooxidation with the further inhibition of fibril formation. Viscosity and circular dichroism (CD) studies show that neither BaP nor further UV-irradiation alters the size or helical conformation of the protein. During thermal denaturation of collagen, BaP fluorescence changes. Collagen from young rat tail tendon shows a pronounced drop at about 38 degrees C, whereas that from old rat tail tendon exhibits an increase with a plateau in the same temperature range. These anomalous changes are observed when tyrosine residues, present only in the non-helical terminal telopeptides of collagen, are excited at 275 nm, but not by direct BaP excitation at 387 nm. These findings suggest that the specific hydrophobic telopeptide region, which plays an important role in fibril formation, are affected by bound BaP.  相似文献   

9.
Interaction of topotecan (TPT) with calf thymus DNA, coliphage T4 DNA, and poly(dG-dC). poly(dG-dC) was studied by optical (linear flow dichroism, UV-vis spectroscopy) and quantum chemical methods. The linear dichroism (LD) signal of TPT bound to DNA was shown to have positive sign in the range 260-295 nm. This means that the plane of quinoline fragment (rings A and B) of TPT molecule form an angle lower 54 degrees with the long axis of DNA, and hence TPT molecule can not intercalate between DNA base pairs. TPT was established to bind to calf thymus DNA as readily as to coliphage T4 DNA whose all cytosines in the major groove were glycosylated at the 5th position. Consequently, the DNA major groove does not participate in TPT binding. TPT molecule was shown to compete with distamycin for binding sites in the minor groove of DNA and poly(dG-dC). poly(dG-dC). Thus, it was demonstrated for the first time that TPT binds to DNA at its minor groove.  相似文献   

10.
A series of novel thiazole-containing oligopeptides (oligo-1,3-thiazolecarboxamides) interesting specifically with the minor groove of DNA was shown to inhibit human DNA topoisomerase I (topo I). Inhibitory effects of thiazole-containing oligopeptides (TCO) increase with the number of thiazole units in such compounds. Inhibitory properties of TCO containing 3 or 4 thiazole units were shown to be 3-10 times better than those of the well-known natural antibiotic, distamycin A containing pyrrole rings. The structure of various additional groups attached to the N-terminus and C-terminus of TCO had no significant effect on TCO interaction with the complex of DNA and topo I. TCO were shown to be capable of binding with double-stranded DNA (dsDNA), and the majority of TCO analyzed were more effective in binding with dsDNA than distamycin A. Possible reasons for the different effects of distamycin A and TCO on the reaction of relaxation catalyzed by topo I are discussed.  相似文献   

11.
The aim of this study was to generate and identify a novel benzo[a]pyrene (BP)-derived DNA adduct found both in vitro and in vivo. To date, the majority of studies have focused on N(2)-[10 beta(7 beta,8a,9a-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene)yl]-deoxyguanosine (anti-BPDE-dG), the major adduct generated following bioactivation of BP. However, a second adduct is also formed following bioactivation of BP which has been speculated to result from further metabolism of 9-OH-BP. In order to identify this second reaction pathway, the ultimate DNA binding species, and the DNA base involved, we have synthesized and characterized a dG-derived DNA adduct arising from further bioactivation of 9-OH-BP in the presence of rat liver microsomes. Analysis of the adducted nucleotides was conducted using both the (32)P-postlabeling assay and capillary electrophoresis-mass spectrometry (CE-MS).  相似文献   

12.
4',6-diamidino-2-phenylindole (DAPI), netropsin, and pentamidine are minor groove binders that have terminal -C(NH2)2+ groups. The hydration changes that accompany their binding to the minor groove of the (AATT)2 sequence have been studied using the osmotic stress technique with fluorescence spectroscopy. The affinity of DAPI for the binding site decreases with the increasing osmolality of the solution, resulting in acquisition of 35+/-1 waters upon binding. A competition fluorescence assay was utilized to measure the binding constants and hydration changes of the other two ligands, using the DNA-DAPI complex as the fluorescence reporter. Upon their association to the (AATT)2 binding site, netropsin and pentamidine acquire 26+/-3 and 34+/-2 additional waters of hydration, respectively. The hydration changes are discussed in the context of the terminal functional groups of the ligands and conformational changes in the DNA.  相似文献   

13.
By using electromobility shift assay (EMSA), we have identified a protein able to recognize the DNA only if it was previously reacted with minor groove binders. This protein binds with very high affinity AT containing DNA treated with minor groove binders such as distamycin A, Hoechst 33258 and 33342, CC-1065 and ethidium bromide minor groove intercalator, but not with major groove binders such as quinacrine mustard, cisplatin or melphalan, or with topoisomerase I inhibitor camptothecin or topoisomerase II inhibitor doxorubicin. This protein was found to be present in different extracts of human, murine and hamster cells, with the human protein which appears to have a molecular weight slightly lower than that of the other species. This protein was found to be expressed both in cancer and normal tissues. By using molecular ultrafiltration techniques as well as southwestern analysis it was estimated that the apparent molecular weight is close to 100 kDa. We can exclude an identity between this protein and other proteins, with a similar molecular weight previously reported to be involved in DNA damage recognition/repair, such as topoisomerase I, mismatch repair activities such as the prokaryotic MutS protein and its human homologue hMSH2 or proteins of the nucleotide excision repair system such as ERCC1, -2, -3 and -4.  相似文献   

14.
15.
S Hanlon  L Wong    G R Pack 《Biophysical journal》1997,72(1):291-300
Poisson-Boltzmann calculations by Pack and co-workers suggest the presence of regions of increased hydrogen ion density in the grooves of DNA. As an experimental test of this prediction, we have attached proton-sensitive probes, with variable linker lengths, to random-sequence DNA at G sites in the minor groove. The amino groups of beta-alanine, gamma-aminobutyric acid (GABA), and epsilon-aminocaproic acid have been coupled at pH 5, via a formaldehyde link, to the exocyclic amino group of guanine, utilizing a reaction that has been extensively investigated by Hanlon and co-workers. The resulting adducts at pH 5 retained duplex B form but exhibited typical circular dichroism (CD) changes previously shown to be correlated with the presence of a net positive charge in the minor groove. Increases in the solvent pH reversed the CD spectral changes in a manner suggesting deprotonation of the carboxylic acid group of the adduct. These data were used to calculate an apparent pK(a) for the COOH. The pK(a) was increased by 2.4 units for beta-alanine, by 1.7 units for GABA, and by 1.5 units for epsilon-amino caproic acid, relative to their values in the free amino acid. This agrees well with Poisson-Boltzmann calculations and the energy minimization of the structures of the adducts that place the carboxyl groups in acidic domains whose hydrogen ion density is approximately 2 orders of magnitude greater than that of bulk solvent.  相似文献   

16.
17.
A synthetic combinatorial library of 10,000 components mostly containing aromatic amino acids was screened for inhibition of DNase I cleavage at two ARE sequences. Ten amino acid building blocks were used to generate the library in which the N and C terminal residues were fixed and the four central positions of the peptide ligands were varied. The DNase I footprinting assay led, after deconvolution through sublibrary synthesis, to the identification of CGL-6382 as an ARE-selective minor groove binder containing a N-terminal nicotinic acid motif adjacent to a N-methylimidazole unit and three N-methylpyrrole units coupled to a C-terminal argininamide residue. The optimized ligand CGL-6382 was found to recognize a 5'-GC(A/T)(A/T) motif within the two cloned androgen receptors responsive elements. The discovery of CGL-6382 as an ARE-selective ligand augurs well for the use of the DNase I footprinting methodology to identify sequence-specific DNA recognition ligands from large mixtures of small molecules.  相似文献   

18.
Intramolecular synapsis of duplex DNA by vaccinia topoisomerase.   总被引:3,自引:0,他引:3       下载免费PDF全文
S Shuman  D G Bear    J Sekiguchi 《The EMBO journal》1997,16(21):6584-6589
Complexes formed by vaccinia topoisomerase I on plasmid DNA were visualized by electron microscopy. The enzyme formed intramolecular loop structures in which non-contiguous DNA segments were synapsed within filamentous protein stems. At high enzyme concentrations the DNA appeared to be zipped up within the protein filaments such that the duplex was folded back on itself. Formation of loops and filaments was also observed with an active site mutant, Topo-Phe274. Binding of Topo-Phe274 to relaxed DNA circles in solution introduced torsional strain, which, after relaxation by catalytic amounts of wild-type topo-isomerase, resulted in acquisition of negative supercoils. We surmise that the topoisomerase-DNA complex is a plectonemic supercoil in which the two duplexes encompassed by the protein filaments are interwound in a right handed helix. We suggest that topoisomerase-mediated DNA synapsis plays a role in viral recombination and in packaging of the 200 kbp vaccinia genome during virus assembly.  相似文献   

19.
A continuum solvent model based on the generalized Born (GB) or finite-difference Poisson-Boltzmann (FDPB) approaches has been employed to compare the binding of 4'-6-diamidine-2-phenyl indole (DAPI) to the minor groove of various DNA sequences. Qualitative agreement between the results of GB and FDPB approaches as well as between calculated and experimentally observed trends regarding the sequence specificity of DAPI binding to B-DNA was obtained. Calculated binding energies were decomposed into various contributions to solvation and DNA-ligand interaction. DNA conformational adaptation was found to make a favorable contribution to the calculated total interaction energy but did not change the DAPI binding affinity ranking of different DNA sequences. The calculations indicate that closed complex formation is mainly driven by nonpolar contributions and was found to be disfavored electrostatically due to a desolvation penalty that outbalances the attractive Coulomb interaction. The calculated penalty was larger for DAPI binding to GC-rich sequences compared with AT-rich target sequences and generally larger for the FDPB vs the GB continuum model. A radial interaction profile for DAPI at different distances from the DNA minor groove revealed an electrostatic energy minimum a few Angstroms farther away from the closed binding geometry. The calculated electrostatic interaction up to this distance is attractive and it may stabilize a nonspecific binding arrangement.  相似文献   

20.
Chen S  Zhang Y  Hecht SM 《Biochemistry》2011,50(43):9340-9351
Vaccinia DNA topoisomerase IB is the smallest of the type IB topoisomerases. Because of its small size (314 amino acids) and target site specificity (5'(C/T)CCTTp(↓) sites), it constitutes an excellent model for studying the interaction of type IB enzymes with duplex DNA. In this study, p-thiophenylalanine was incorporated into the enzyme active site (position 274) by in vitro translation in the presence of a chemically misacylated tRNA. The modification, which resulted in replacement of the nucleophilic tyrosine OH group with SH, retained DNA topoisomerase activity and did not alter the DNA cleavage site. However, the modified topoisomerase effected relaxation of supercoiled plasmid DNA at a rate about 16-fold slower than the wild-type enzyme. The thiophenylalanine-induced DNA cleavage rate (k(cl) = 1 × 10(-4) s(-1)) was 30 times lower than for the wild-type enzyme (k(cl) = 3 × 10(-3) s(-1)). In contrast, thiophenylalanine-induced DNA religation was faster than that of the wild-type enzyme. We propose that the change in kinetics reflects the difference in bond energies between the O-P and S-P bonds being formed and broken in the reactions catalyzed by the wild-type and modified enzymes. We also studied the effect of adding Mg(2+) and Mn(2+) to the wild-type and modified topoisomerases I. Divalent metal ions such as Mg(2+) and Mn(2+) increased DNA relaxation activity of the wild-type and modified enzymes. However, the pattern of increases failed to support the possibility that metal ion-heteroatom interaction is required for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号