首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
H M Katzen  D D Soderman 《Biochemistry》1975,14(11):2293-2298
The interaction of concanavalin A (Con A) with isolated adipocytes was studied using Con A-Sepharose beads in the affinity binding buoyant density method previously used to study insulin receptors. Free Con A-Sepharose beads could be separated from the bound beads (cell-bead complexes) by sedimentation of the high density beads and floatation of the low density complexes. Sedimented and total beads could be determined by counting the radioactivity associated with [-125I]Con A coupled in tracer amounts to the beads. Various lines of evidence demonstrated the high specificity of binding. Soluble Con A, but neither insulin nor any of the other proteins tested, inhibited and reversed the binding of Con A-Sepharose to the cells. Whereas treatment of Con A- (and insulin-) derivatized beads with anti-insulin antiserum, and cells with trypsin, readily inhibited binding of insulin-Sepharose to cells, neither treatment inhibited Con A-Sepharose binding. According to the relative extents of inhibition and reversal of binding exhibited by 15 different carbohydrates, the saccharide binding sites on Con A-Sepharose appeared virtually identical with the known sites on free Con A. Protein-containing components of cell ghosts that were solubilized with Triton X-100 appeared to correspond to the Con A-Sepharose receptor sites on the basis of their ability to bind to Con A-Sepharose columns, be eluted with methyl alpha-D-mannopyranoside (MeMan) and be precipitated by the free lectin and redissolved by MeMan. According to (a) Normarski interference contrast microscopic examination of the topographical distribution of Con A-Sepharose beads and cells surrounding and bound to each other, and (b) absence of any apparent morphological changes in the cells due to binding, it is suggested that extensive clustering ("cap" or "macropatch" formation) of Con A receptors did not occur on the adipocyte as a consequence of the interaction of the cells with the Con A-Sepharose beads.  相似文献   

2.
Synaptosomal fractions were isolated from frog retina: a fraction enriched in photoreceptor terminals (P1) and a second one (P2) containing interneurons terminals. We compared the binding of [3H]glycine and [3H]strychine to membranes of these synaptosomes. The binding of both radioactive ligands was saturable and Na+-independent. [3H]Glycine bound to a single site in P1 and P2 synaptosomal fractions, with KD=12 and 82 nM and BMax=3.1 and 3.06 pmol/mg protein respectively. [3H]Strychnine bound to two sites in each one of the synaptosomal fractions. For P1 KD values were 3.9 and 18.7 nM, and BMax values were 1.1 and 7.1 pmol/mg protein, respecitively. Membranes from the P2 synaptosomal fraction showed KD's of 0.6 and 48 nM and BMax's of 0.4 and 4.5 pmol/mg. Specific [3H]glycine binding was displaced by -alanine, l-serine, d-serine and HA966, but not by strychnine 7-chlorokynurenic or 5,7-dichloro-kynurenic acids. Specific [3H]strychnine, binding was partially displaced by glycine and related aminoacids and totally displaced only by 2-NH2-strychnine. Our results indicate the presence of high affinity binding sites for glycine and strychnine in frog retinal synaptosomal membranes. The pharmacological binding pattern indicates the presence of the strychnine sensitive glycine receptor as well as other sites. These might not include the NMDA receptor-associated glycine site.  相似文献   

3.
Concanavalin A-binding (Con A)-binding cell surface glycoproteins were isolated, via Con A-affinity chromatography, from Triton X-100-solubilized Chinese hamster ovary (CHO) cell plasma membranes. The Con A binding glycoproteins isolated in this manner displayed a significantly different profile on sodium dodecyl sulfate-polyacrylamide gels than did the Tritonsoluble surface components, which were not retarded by the Con A-Sepharose column. [125I]-Con A overlays of the pooled column fractions displayed on sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE) demonstrated that there were virtually no Con A receptors associated with the unretarded peak released by the Con A-Sepharose column, whereas the material which was bound and specifically eluted from the Con A-Sepharose column with the sugar hapten α-methyl-D-mannopyranoside contained at least 15 prominent bands which bound [125I]-Con A. In order to produce monoclonal antibodies against various cell surface Con A receptors, Balb/c mice were immunized with the pooled Con A receptor fraction. Following immunization spleens were excised from the animals and single spleen cell suspensions were fused with mouse myeloma P3/X63-Ag8 cells. Numerous hybridoma clones were subsequently picked on the basis of their ability to secrete antibody which could bind to both live and glutaraldehyde-fixed CHO cells as well as to the Triton-soluble fraction isolated from the CHO plasma membrane fraction. Antibody from two of these clones was able to precipitate a single [125I]-labeled CHO surface component of ~265,000 daltons.  相似文献   

4.
Abstract— Uptake systems for [14C]aspartate and [14C]glutamate were characterized in two distinct synaptosomal fractions solated from rabbit retina. The P, synaptosomal fraction was highly enriched in large photoreceptor cell synaptosomes but contained very few conventional sized synaptosomes from amacrine, horizontal or bipolar cells. In contrast, the P2 synaptosomal fraction contained numerous conventional sized synaptosomes and was virtually free of photoreceptor cell synaptosomes. Both synaptosomal fractions took up [14C]aspartate and [14C]glutamate with high affinity [ K m= 1–2μM). Uptake characteristics were similar to those described for high affinity uptake systems in brain synaptosomes, i.e. saturation kinetics; temperature and Na+ dependence. Although the presence of a high affinity uptake system is not a definitive criterion for demonstration of functional neurotransmitter systems, it is an important and necessary prerequisite and can thus be considered as supportive evidence for the involvement of asparate and glutamate in neurotransmission in rabbit retina.  相似文献   

5.
Proteokeratan sulfate was extracted and purified from bovine corneal stroma and then characterized by chemical and biochemical analyses. It was fractionated into several fractions by affinity chromatography on a concanavalin A-Sepharose column or by hydrophobic chromatography on a phenyl-Sepharose column. These fractions differed widely from one another in carbohydrate content, though no significant differences of their amino acid compositions were observed. One fraction (ca. 25%, on a dry weight basis) tightly bound to a concanavalin A-Sepharose column, compared with another fraction (ca. 65%) weakly bound to the same column, was poor in galactose and N-acetylglucosamine, but contained mannose in a high proportion. Fractions (ca. 30%) tightly bound to a phenyl-Sepharose column, in contrast to the one (ca. 66%) weakly bound, had low carbohydrate contents, like the fraction tightly bound to a concanavalin A-Sepharose column. Additionally, the fractions tightly bound to these affinity columns exhibited strong inhibitory actions on erythrocyte-concanavalin A agglutination. To obtain further details of the carbohydrate moiety of the proteokeratan sulfate, an attempt was made to separate and characterize peptidokeratan sulfate and Asn-linked oligosaccharide derived from some proteokeratan sulfate fractions. The present work revealed that the proteokeratan sulfate contains keratan sulfate and high mannose-type oligosaccharide in an approximate chain number ratio of 3.5:1.0, the keratan sulfate content varies widely and the oligosaccharide content increases with decrease of the keratan sulfate content, and the protein core is homogeneous at least with respect to the amino acid composition.  相似文献   

6.
The procyclic acidic repetitive protein (PARP) of Trypanosoma brucei was purified by cell fractionation followed by ion-exchange and concanavalin A-Sepharose affinity chromatography. PARP is membrane-bound and comprises about 1% of the total procyclic trypanosome protein or 6 x 10(6) molecules per parasite. The results of NH2-terminal sequencing and amino acid analysis indicate that PARP is processed by removal of an N-terminal signal sequence and the hydrophobic COOH terminus. Metabolic labeling of PARP with [3H] ethanolamine is consistent with attachment of the protein to the membrane via a glycosylphosphatidylinositol anchor. The glycolipid can be removed by base hydrolysis or nitrous acid deamination but is not susceptible to bacterial phosphatidylinositol-specific phospholipase C.  相似文献   

7.
Lectin affinity chromatography was used to reduce the amount of the abundant glycoprotein beta-conglycinin in total protein samples prepared from developing soybean (Glycine max L. Merrill cv. Jack) seeds. Electrophoretic analysis of both the concanavalin A-Sepharose binding and non-binding fraction revealed an abundant protein band at Mr 26,000. The amount of this protein was greatly increased when concanavalin A-Sepharose was used with urea-containing buffers. Peptide mass fingerprint analysis of this abundant protein band unequivocally identified it as concanavalin A (con A). A simple and gentle method was used to chemically cross-link the con A subunits so that the lectin-Sepharose retained the ability to bind high-mannose type glycoproteins. The chemically cross-linked con A-Sepharose was stable in buffers that contained up to 8M urea, making this an affinity matrix suitable for use in electrophoresis-based proteomic analyses.  相似文献   

8.
Saturable and stereoselective binding sites for [3H]threo-(+/-)-methylphenidate were characterized in rat brain membranes. The highest density of [3H]threo-(+/-)-methylphenidate binding sites was found in the synaptosomal fraction of corpus striatum. Scatchard analysis revealed a single class of noninteracting binding sites with an apparent dissociation constant (KD) of 235 nM and a maximum number of binding sites (Bmax) of 13.4 pmol/mg protein. Saturable, high-affinity binding of [3H]threo-(+/-)-methylphenidate to striatal synaptosomal membranes was dependent on the presence of sodium ions. A good correlation (r = 0.88; p less than 0.001) was observed between the potencies of various psychotropic drugs in displacing [3H]threo-(+/-)-methylphenidate from these sites and their potencies as inhibitors of [3H]3,4-dihydroxyphenylethylamine ( [3H]dopamine) uptake into striatal synaptosomes. A good correlation (r = 0.85; p less than 0.001) was also observed between the potencies of a series of ritalinic acid esters in inhibiting [3H]threo-(+/-)-methylphenidate binding to striatal synaptosomal membranes and their potencies as motor stimulants in mice. These observations suggest that the binding sites for [3H]threo-(+/-)-methylphenidate described here are associated with a dopamine uptake or transport complex, and that these sites may mediate the motor stimulant properties of ritalinic acid esters such as methylphenidate.  相似文献   

9.
Sodium-dependent [3H]choline uptake and coupled [3H]acetylcholine synthesis were inhibited in rat cerebral cortical synaptosomes in a dose- (1-10 micrograms/ml) and time-dependent manner by affinity-purified antibodies directed against ubiquitin (anti-Ub). Neither sodium-independent [3H]choline uptake nor [3H]acetylcholine release was affected by up to 10 micrograms/ml anti-Ub, indicating that the cholinergic terminals were not depolarized by the anti-Ub. Binding of anti-Ub to synaptosomes, as measured with 125I-protein A, was saturable and occurred over the same concentration range (1-10 micrograms/ml) at which uptake inhibition was observed. Although preimmune IgG bound to the synaptosome preparation to a greater extent and was apparently not readily saturable, this fortuitous binding was without effect on high affinity choline uptake and conversion to acetylcholine. The results suggest the presence of a ubiquitin-protein conjugate on the synaptosomal surface and a functional relationship between this protein conjugate and the sodium-dependent choline transport system.  相似文献   

10.
Abstract— The biochemical and pharmacological characteristics of dopamine agonist and antagonist binding to rat striatal subcellular fractions were studied and compared to the localization of dopamine–sensitive adenylate cyclase activity. The highest specific activity of adenylate cyclase sensitive to dopamine was associated almost exclusively with the crude synaptic membrane fraction (P2). Using [3H]-haloperidol, [3H]apomorphine and [3H]spiroperidol as markers for the dopamine receptor, high affinity and stereoselective specific binding was observed for the crude synaptic fraction and the microsomal fraction (P3). Analysis of the binding of [3H]haloperidol to the striatal microsomal preparation revealed a homogeneous receptor site with a Kd value of 3.0 nm . The data for [3H]haloperidol binding to the crude synaptosomal fraction showed two saturable binding sites with Kd values of 2.5 nm and 12.5 nm . A similar heterogeneous binding profile was observed in the P2 fraction using [3H]apomorphine. The Kd values for [3H]apomorphine in this fraction were determined to be 1.2 nm and 7.2 nm . The effects of various biochemical parameters including ionic strength, salt concentration and pH on the binding of [3H]haloperidol to the P2 fraction were also studied. Overall, these data show that the subcellular localization of multiple binding sites in the crude synaptosomal fraction and the identification of specific binding to purified synaptosomes correlate with the subcellular distribution of striatal dopamine-sensitive adenylate cyclase activity.  相似文献   

11.
Tubulin was measured through [3H]colchicine-binding in membrane and soluble components of chick retinal subcellular fractions. Total tubulin content was concentrated in the synaptosomal and rod outer segment fractions. Although in total retinal homogenate only 20% of total tubulin was associated to the membrane, in synaptosomes and photoreceptor outer segments, up to 50% of tubulin was bound to the membrane fraction. Results raise the possibility of tubulin participation in transmembrane phenomena which are common to transmitter release and photoexcitation.  相似文献   

12.
A (--)-[3H]norepinephrine binding site was identified in a crude synaptosomal fraction isolated from bovine hypothalamus which bound norepinephrine rapidly, reversibly, and stereospecificially. The results were most consistent with binding of (-)-[H]norepinephrine to the carrier molecule used to translocate biogenic amines into synaptic vesicles. The binding studies indicated that specific binding of (--)-[3H]norepinephrine to the crude synaptosomal fraction was greatly enhanced by 4 mM MgCl2 pand 1 mM ATP. The increased binding of (--)-[3H5norepinephrine also occurred in the presence of MgCl2 and GTP, but AMP, adenosine and adenyl-5'-yl imidodiphosphate would not substitute for ATP. Neither CaCl2 nor ZnSO4 could be substituted for the MgCl2. In the presence of MgCl2 and ATP, the dissociation constant for (--)-[3H]norepinephrine was 280 nM with a specific binding site density of 4.8 pmol/mg protein. Binding was stereospecific with ratios of 15, 4, and 6.5 for the affinities of (--)-isomers to (+)-isomers for norepinephrine, epinephrine and isoproterenol, respectively. Drug competition studies, conducted in the presence of Mg2+ and ATP, indicated that (--)-epinephrine, (--)-norepinephrine, dopamine and serotonin had inhibitory constants ranging from 0.25 to 0.8 micron with (--)-isoproterenol and tyramine having inhibitory constants around 2 micron. Reserpine was the most potent inhibitor having an inhibition constant of 8.6 +/- 0.3 nM. The binding data were not consistent with the specific site being the alpha- or beta-receptors for norepinephrine, the Uptake1 Site for norepinephrine into synaptosomes or the metabolizing enzymes for norepinephrine.  相似文献   

13.
This report describes the structural analyses of the O- and N-linked oligosaccharides contained in glycoproteins synthesized by 48-hr-old Schistosoma mansoni schistosomula. Schistosomula were prepared by mechanical transformation of cercariae and were then incubated in media containing either [2-3H] mannose, [6-3H]glucosamine, or [6-3H]galactose to metabolically radiolabel the oligosaccharide moieties of newly synthesized glycoproteins. Analysis by SDS-polyacrylamide gel electrophoresis and fluorography demonstrated that many glycoproteins were metabolically radiolabeled with the radioactive mannose and glucosamine precursors, whereas few glycoproteins were labeled by the radioactive galactose precursor. Glycopeptide were prepared from the radiolabeled glycoproteins by digestion with pronase and fractionated by chromatography on columns of concanavalin A-Sepharose and pea lectin-agarose. The structures of the oligosaccharide chains in the glycopeptides were analyzed by a variety of techniques. The major O-linked sugars were not bound by concanavalin A-Sepharose and consisted of simple O-linked monosaccharides that were terminal O-linked N-acetylgalactosamine, the minor type, and terminal O-linked N-acetylglucosamine, the major type. The N-linked oligosaccharides were found to consist of high mannose- and complex-type chains. The high mannose-type N-linked chains, which were bound with high affinity by concanavalin A-Sepharose, ranged in size from Man6GlcNAc2 to Man9GlcNAc2. The complex-type chains contained mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. No sialic acid was present in any metabolically radiolabeled glycoproteins from schistosomula.  相似文献   

14.
Rat brain membranes were treated with different protein modifying reagents, all of which were able to reduce [3H]tryptamine binding. However, inactivation by N-ethylmaleimide and iodoacetamide only was counteracted by coincubation with tryptamine. Thus, the [3H]tryptamine binding molecule is a membrane protein with an essential sulfhydryl group at the binding site. After incubation of digitonin-solubilized membranes with seven different lectins, no precipitation of [3H]tryptamine binding sites was observed. On concanavalin A and wheat germ agglutinin affinity chromatography, no [3H]tryptamine binding activity was found to be specifically bound. Therefore, the [3H]tryptamine binding protein appears to be devoid of lectin binding carbohydrate residues.  相似文献   

15.
The protease activity of cultured normal human skin fibroblasts was studied using the synthetic fluorigenic peptides, the modified protein 4-methylumbelliferyl-casein, the thiol inhibitors and the affinity for concanavalin A-Sepharose. The majority of the activity to N-benzyloxycarbonyl-L-phenylalanyl-L-arginyl-7-amido-4-methyl-coumarin and N-a-benzyloxycarbonyl-L-arginyl-arginyl-7-amido-4-methylcoumarin had a pH optimum of 6.0, and was thiol-dependent and inhibited by leupeptin and antipain. The activity toward N-benzyloxycarbonyl-L-phenylalanyl-L-arginyl-7-amido-4-methylcoumarin represents both cathepsin B and cathepsin L, whereas the activity towards 4-methylumbelliferyl-casein represent only cathepsin L. Cathepsin H could not be detected when assayed with L-arginine-7-amido-4-methylcoumarin substrate. Cathepsin D was present in comparatively small amounts when assayed with 4-methylumbelliferyl-casein. Activity towards 4-methylumbelliferyl-casein had pH optima at 3 and 6 and was stimulated by dithiothreitol. A proportion of the activity at pH 6.0 was not dependent on thiols and not inhibited by leupeptin, and had the general characteristics of a carboxyl proteinase. Over 70 per cent of the activity was in the lysosomal fraction and showed structure-linked latency. All the detectable protein emerged from the immobilized concanavalin A column and the fractions eluted by alpha-methyl-D-mannoside were significantly hydrolysed the synthetic peptides. Only that fraction which bound to concanavalin A was active towards 4-methylumbelliferyl-casein. Cathepsin B had no affinity for concanavalin A-Sepharose due to the absence of glycoprotein content, unlike cathepsin L which showed a strong affinity for concanavalin A-Sepharose.  相似文献   

16.
Bovine brain synaptic membranes which were frozen and then extensively washed showed low affinity [3H]muscimol binding. These membranes contained GABA and calmodulin, apparently tightly bound within the membrane fraction. Membranes which were additionally treated with the detergent Triton X-100 showed high affinity [3H]muscimol binding. These membranes did not appear to contain GABA or calmodulin. Transmission electron microscopy studies demonstrated that the washed membrane fraction contained many synaptosomal and vesicular structures. Triton treatment led to the extensive rupture of these structures. These studies explain the well-reported findings of tightly bound GABA and calmodulin in brain membrane fractions, as being due to the entrapment of these compounds inside sealed membrane-bound structures which are still present after a freezethaw and extensive wash treatment, their complete removal requiring Triton-treatment to rupture the vesicles.  相似文献   

17.
The relationship between the nucleoside transport system and the nitrobenzylthioinosine-sensitive and -resistant [3H]dipyridamole binding sites was examined by comparing the characteristics of [3H]dipyridamole binding with those of [3H]nitrobenzylthioinosine binding and [3H]-uridine influx in rabbit and guinea pig cerebral cortical synaptosomes. Two distinct high-affinity synaptosomal membrane-associated [3H]dipyridamole binding sites, with different sensitivities to inhibition by nitrobenzylthioinosine, were characterized in the presence of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, 0.01%) to prevent [3H]dipyridamole binding to glass tubes and filters. The nitrobenzylthioinosine-resistant [3H]-dipyridamole binding sites represented a greater proportion of the total membrane sites in guinea pig than in rabbit (40 vs. 10% based on inhibition studies). In rabbit, nitrobenzylthioinosine-sensitive [3H]dipyridamole binding (KD = 1.4 +/- 0.2 nM) and [3H]nitrobenzylthioinosine binding (KD = 0.30 +/- 0.01 nM) appeared to involve the same membrane site associated with the nitrobenzylthioinosine-sensitive nucleoside transporter. By mass law analysis, [3H]-dipyridamole binding in guinea pig could be resolved into two components based on sensitivity to inhibition by 1 microM nitrobenzylthioinosine. The nitrobenzylthioinosine-resistant [3H]dipyridamole binding sites were relatively insensitive to inhibition by all of the nucleoside transport substrates and inhibitors tested, with the exception of dipyridamole itself. In guinea pig synaptosomes, 100 microM dilazep blocked nitrobenzylthioinosine-resistant [3H]uridine transport completely but inhibited the nitrobenzylthioinosine-resistant [3H]dipyridamole binding component by only 20%. Furthermore, a greater percentage of the [3H]dipyridamole binding was nitrobenzylthioinosine resistant in guinea pig compared with rabbit, yet both species had a similar percentage of nitrobenzylthioinosine-resistant [3H]uridine transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
GABA-modulin, a basic protein that allosterically inhibits the high-affinity binding of GABA to its recognition sites, has been extracted and purified from the synaptosomal fraction of rat brain where it represents approximately 0.5% of the total synaptosomal proteins. GABA-modulin has characteristics in common to the class of highly basic proteins isolated from myelin, in particular to the rat small myelin basic protein (SMBP). However, GABA-modulin is located selectively in synaptosomes, whereas the SMBP is located in myelin. Moreover, synaptosomal GABA-modulin is different from SMBP in amino acid composition (it contains more Glx and Lys and fewer Arg residues) and in apparent molecular weight (17,000 and 15,000 for GABA-modulin and SMBP, respectively). Synaptosomal GABA-modulin fails to bind [3H]muscimol per se but noncompetitively inhibits (IC30 approximately 0.5 microM) the binding of [3H]muscimol to purified synaptic membranes. Cyanogen bromide treatment generated a 13,000 MW major fragment from both SMBP and GABA-modulin. These two fragments were compared and showed differences in amino acid composition and sequence. Moreover, the peptide maps generated from GABA-modulin and SMBP by trypsin and staphylococcal V8 protease digestion are different. The high concentration of GABA-modulin in synaptosomal membranes, its high potency in the inhibition of GABA binding, and its neuronal specificity suggest that GABA-modulin plays an important role in neuronal membrane function linked to the modulation of GABA and perhaps other neurotransmitter receptors.  相似文献   

19.
A membrane protein fraction showing affinity for ribosomes was isolated from rat liver microsomes (microsomal fractions) in association with ribosomes by treatment of the microsomes with Emulgen 913 and then solubilized from the ribosomes with sodium deoxycholate. This protein fraction was separated into two fractions, glycoproteins, including ribophorins I and II, and non-glycoproteins, virtually free from ribophorins I and II, on concanavalin A-Sepharose columns. The two fractions were each reconstituted into liposomes to determine their ribosome-binding activities. The specific binding activity of the non-glycoprotein fraction was approx. 2.3-fold higher than that of the glycoprotein fraction. The recovery of ribosome-binding capacity of the two fractions was about 85% of the total binding capacity of the material applied to a concanavalin A-Sepharose column, and about 90% of it was found in the non-glycoprotein fraction. The affinity constants of the ribosomes for the reconstituted liposomes were somewhat higher than those for stripped rough microsomes. The mode of ribosome binding to the reconstituted liposomes was very similar to that to the stripped rough microsomes, in its sensitivity to proteolytic enzymes and its strong inhibition by increasing KCl concentration. These results support the idea that ribosome binding to rat liver microsomes is not directly mediated by ribophorins I and II, but that another unidentified membrane protein(s) plays a role in ribosome binding.  相似文献   

20.
GABA release and uptake were examined in Genetic Absence Epilepsy Rats from Strasbourg and in non-epileptic control animals, using crude synaptosomes prepared from the cerebral cortex and thalamus. Uptake of [3H]GABA over time was reduced in thalamic synaptosomes from epileptic rats, compared to controls. The affinity of the uptake process in thalamic synaptosomes was lower in epileptic animals. NNC-711, a ligand for the GAT-1 uptake protein, reduced synaptosomal uptake by more than 95%; beta-alanine, an inhibitor selective for the uptake proteins GAT-2 and -3, did not significantly reduce synaptosomal uptake. Autoradiography studies using [3H]tiagabine, a ligand selective for GAT-1, revealed no differences between the strains in either affinity or levels of binding. Ethanolamine O-sulphate (100 microM), a selective inhibitor of GABA-transaminase, did not affect uptake levels. Aminooxyacetic acid (10-100 microM), an inhibitor of GABA-transaminase and, to a lesser extent, glutamate decarboxylase, caused an increase in measured uptake in both thalamic and cortical synaptosomes, in both strains. We found no difference in in vitro basal or KCl-stimulated endogenous GABA release between epileptic and control rats. These results indicate that GABA uptake in the thalamus of Genetic Absence Epilepsy Rats from Strasbourg was reduced, compared to control animals. The lower uptake affinity in the epileptic animals probably contributed to the reduction in uptake over time. Uptake appeared to be mediated primarily by the 'neuronal' transporter GAT-1. Autoradiography studies revealed no differences in the number or affinity of this uptake protein. It is therefore possible that altered functional modulation of GAT-1 caused the decrease in uptake shown in the epileptic animals. Inhibition of GABA-transaminase activity had no effect on measured GABA uptake, whereas a reduction in glutamate decarboxylase activity may have affected measured uptake levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号