首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the perfused liver and hindquarter of the rat, the uptake of glycosylated insulin and its effect on glucose output were investigated. Insulin was glycosylated in ambient high glucose concentration, and glycosylated insulin GI80 (insulin incubated with 0.08% glucose), GI350 (incubated with 0.35% glucose), and GI1000 (incubated with 1% glucose) were prepared. The liver and hindquarter were perfused with nonglycosylated insulin (N-GI) or glycosylated insulin at a concentration of 100 or 1000 microU/ml. There were no significant differences in the fractional uptake of insulin by perfused liver and hindquarter despite glycosylation. Insulin-induced decrement in glucose output was significantly lower in the liver perfused with GI1000 than that in the liver perfused with N-GI, GI80, and GI350 at an insulin concentration of 100 microU/ml. There were no significant differences in insulin-induced decrement in glucose output between the hindquarter perfused with N-GI, GI80, GI350, and GI1000. These results suggest that when insulin (100 microU/ml) is incubated with a markedly elevated concentration of glucose (1000 mg/dl) its biological activity is reduced in the liver, but not in the hindquarter.  相似文献   

2.
The possible direct effects of insulin and glucagon on carnitine uptake by perfused rat liver were studied with L-[3H]carnitine of an initial concentration of 50 microM in the perfusate. Insulin (10 nM) did not significantly affect the uptake by livers from fed animals. However, insulin could reverse the stimulated transport by livers from 24-h fasted animals, reducing the uptake rate from 852 +/- 54.1 to 480 +/- 39.9 (mean +/- S.E.), P less than 0.01 (rates are expressed as nmol per h per 100 g body wt). Glucagon (50 nM) stimulated the uptake rate when livers were either from fed (551 +/- 40.1 vs. 915 +/- 55.3, P less than 0.01) or from fasted animals (852 +/- 54.1 vs. 1142 +/- 88.1, P less than 0.02). Based on these and earlier observations, we propose that the carnitine concentration in rat liver is controlled by insulin and glucagon via cellular transport processes.  相似文献   

3.
4.
The secretion of both glucagon and insulin by the isolated perfused rat pancreas was significantly stimulated by 10(-7) M PGH2. Experiments to show that the stimulated secretion was mediated by conversion of PGH2 to TXA2 or TXB2 revealed no correlation between the amount of secretion and the amount of thromboxane formed. Conversion of PGH2 with a crude platelet thromboxane synthase preparation caused a progressive loss of ability to secret insulin, whereas the capacity to stimulate release of glucagon remained at about one-half the maximal level. This relatively stable and selective secretagogue action on the alpha-cells appeared to be due to the formation of PGD2 by the platelet preparation. Direct administration of PGD2 confirmed this interpretation and showed clearly that this prostaglandin is a potent secretagogue for glucagon with little activity in stimulating the release of insulin. Our results have shown high and relatively equal stimulation of secretion by alpha- and beta-cells with exogenous PGE2, PGF2 alpha, and PGH2, little or no secretion by either cell type with TXA2, TXB2, or PGI2, and a unique selective stimulatory action of PGD2 upon the alpha-cell.  相似文献   

5.
6.
7.
The proteolytic release of leucine and isoleucine was assessed in homogenates of rat livers perfused under conditions known to influence protein degradation in the intact liver. Release was increased by perfusion alone and by additions of glucagon and was inhibited by insulin and amino acids. These responses correlated both with rates of proteolysis during perfusion and with physical alterations of the lysosomal system, reported earlier. Homogenate proteolysis appeared to comprise two components: the release of free amino acids from the total particulate fraction and from peptides in the cytosol. Both components are believed to be generated by elements of the lysosomal system.  相似文献   

8.
9.
10.
11.
T Mine  S Kimura  H Osawa  E Ogata 《Life sciences》1986,38(25):2285-2292
Cobalt ions (2 mM) inhibited the glycogenolysis induced by phenylephrine and glucagon in perfused rat liver. Cobalt ions also inhibited 45Ca++ efflux from prelabelled livers induced by phenylephrine and glucagon. In addition, they inhibited the rise in tissue levels of cyclic AMP caused by glucagon, but did not inhibit the stimulation of 45Ca++ efflux or glycogenolysis by cyclic AMP or dibutyryl cyclic AMP. The specific binding of glucagon and alpha-agonist to hepatocytes was not inhibited by cobalt ions. These data suggest that cobalt ions, presumably through their high affinity for calcium binding sites on membranes inhibit the stimulation of glycogenolysis by phenylephrine and glucagon in distinct ways; one by inhibiting calcium mobilization and the other by inhibiting cyclic AMP production. Therefore, it is conceivable that membrane-bound calcium plays an important role in stimulating Ca++ mobilization by phenylephrine, and cyclic AMP production by glucagon.  相似文献   

12.
Parathormone (0.15 U/ml) failed to affect the rate of glucagon and insulin release by the perfused rat pancreas exposed to glucose in either low (3.3 mM) or high (8.3 mM) concentration. Parathormone also failed to interfere with the suppressive effect of glucose (16.6mM) upon glucagon release and its stimulatory action upon insulin secretion. Likewise, the biphasic release of both glucagon and insulin evoked by arginine (10.0 mM) in the presence of glucose (8.3 mM) was unaffected by parathormone. These findings suggest that the endocrine pancreas may not be a target organ for any direct and immediate action of parathormone.  相似文献   

13.
Quinolinic acid (Q.A.) which inhibits gluconeogenesis at the site of phosphoenolpyruvate (PEP) synthesis, reduced the content of PEP while elevating that of aspartate and malate in rat livers perfused with a medium containing 10 mM L-lactate. Glucagon at 10(-9) M did not affect Q.A. inhibition of lactate gluconeogenesis nor the depression of PEP level, but further elevated malate and aspartate accumulation. Exogenous butyrate had the same effect as glucagon on these parameters. Butylmalonate (BM), an inhibitor of mitochondrial malate transport, inhibited lactate and propionate gluconeogenesis to similar extents. The addition of 10(-9) M glucagon had no effect on BM inhibition of lactate gluconeogenesis, but almost completely reversed BM inhibition of propionate gluconeogenesis. These results suggest that glucagon may act on at least two sites, resulting in elevated hepatic gluconeogenesis. First, it may stimulate dicarboxylic acid synthesis (malate and oxaloacetate, specifically) through activation of pyruvate carboxylation. Secondly, it may stimulate synthesis of other dicarboxylic acids (fumarate, for example) by activating certain steps of the tricarboxylic acid cycle. The stimulatory effect of glucagon on gluconeogenesis in the perfused rat liver is well documented (1, 2). Exton et al., who earlier located the site of stimulation between pyruvate and PEP synthesis (3), proposed that glucagon stimulated PEP synthesis in the perfused rat liver (4), while reports from Williamson et al. (5) suggested the pyruvate-carboxylase reaction as the site of glucagon action. Stimulation at sites above PEP formation and of portions of the tricarboxylic acid cycle (4) by glucagon have also been suggested (6). In the present experiments, we have used substrates entering at different parts of the gluconeogenic pathway, and specific inhibitors to further resolve the action of glucagon.  相似文献   

14.
15.
16.
In order to elucidate the effect of glucagon antiserum on the endocrine pancreas, the release of somatostatin, glucagon, and insulin from the isolated perfused rat pancreas was studied following the infusion of arginine both with and without pretreatment by glucagon antiserum. Various concentrations of arginine in the presence of 5.5 mM glucose stimulated both somatostatin and glucagon secretion. However, the responses of somatostatin and glucagon were different at different doses of arginine. The infusion of glucagon antiserum strongly stimulated basal secretion in the perfusate total glucagon (free + antibody bound glucagon) and also enhanced its response to arginine, but free glucagon was undetectable in the perfusate during the infusion. On the other hand, the glucagon antiserum had no significant effect on either insulin or somatostatin secretion. Moreover, electron microscopic study revealed degrannulation and vacuolization in the cytoplasm of the A cells after exposure to glucagon antiserum, suggesting a hypersecretion of glucagon, but no significant change was found in the B cells or the D cells. We conclude that in a single pass perfusion system glucagon antiserum does not affect somatostatin or insulin secretion, although it enhances glucagon secretion.  相似文献   

17.
The effect of hepatic blood flow and portal insulin concentration on insulin extraction during one passage through the isolated perfused rat liver was studied. The percentage of insulin extracted was constant over the physiological range of blood flows (4 to 28 ml/min). The total amount of insulin extracted increased as the input concentration was raised from 48 to 4860 microU/ml with the highest level of extraction being approximately 700 microU of insulin per gram of liver per minute. When square wave input pulses of 243 to 4860 microU/ml were presented, about 5% of this insulin was retained and then released by the liver for periods up to 15 minutes after the cessation of the input. The possible roles of glucose and glucagon as regulators of insulin extraction were studied. Glucose (300 mg/dl), as compared with no glucose, led to a significant reduction of insulin extraction (22% vs. 38%, p less than 0.001). Glucagon had no effect on insulin extraction in the presence of constant levels of glucose. It is concluded, therefore, that glucose may increase circulating insulin levels not only by its well known stimulation of insulin secretion by the pancreas, but also by inhibiting insulin extraction by the liver.  相似文献   

18.
A reversible interconversion of two kinetically distinct forms of hepatic pyruvate kinase regulated by glucagon and insulin is demonstrated in the perfused rat liver. The regulation does not involve the total enzyme content of the liver, but rather results in a modulation of the substrate dependence. The forms of pyruvate kinase in liver homogenates are distinguished by measurements of the ratio of the enzyme activity at a subsaturating concentration of P-enolpyruvate (1.3 mM) to the activity at a saturating concentration of this substrate (6.6 mM). A low ratio form of pyruvate kinase (ratio between 0.1 and 0.2) is obtained from livers perfused with 10(-7) M glucagon or 0.1 mM adenosine 3':5'-monophosphate (cyclic AMP). A high ratio form of the enzyme is obtained from livers perfused with no hormone (ratio = 0.35 to 0.45). The regulation of pyruvate kinase by glucagon and cyclic AMP occurs within 2 min following the hormone addition to the liver. Insulin (22 milliunits/ml) counteracts the inhibition of pyruvate kinase caused by 5 X 10(-11) M glucagon, but has only a slight influence on the enzyme properties in the absence of the hyperglycemic hormone. The low ratio form of pyruvate kinase obtained from livers perfused with glucagon or cyclic AMP is unstable in liver extracts and will revert to a high ratio form within 10 min at 37 degrees or within a few hours at 0 degrees. Pyruvate kinase is quantitatively precipitated from liver supernatants with 2.5 M ammonium sulfate. This precipitation stabilizes the enzyme and preserves the kinetically distinguishable forms. The kinetic properties of the two forms of rat hepatic pyruvate kinase are examined using ammonium sulfate precipitates from the perfused rat liver. At pH 7.5 the high ratio form of the enzyme has [S]0.5 = 1.6 +/- 0.2 mM P-enolpyruvate (n = 8). The low ratio form of enzyme from livers perfused with glucagon or cyclic AMP has [S]0.5 = 2.5 +/- 0.4 mM P-enolpyruvate (n = 8). The modification of pyruvate kinase induced by glucagon does not alter the dependence of the enzyme activity on ADP (Km is approximately 0.5 mM ADP for both forms of the enzyme). Both forms are allosterically modulated by fructose 1,6-bisphosphate, L-alanine, and ATP. The changes in the kinetic properties of hepatic pyruvate kinase which follow treating the perfused rat liver with glucagon or cyclic AMP are consistent with the changes observed in the enzyme properties upon phosphorylation in vitro by a clyclic AMP-stimulated protein kinase (Ljungstr?m, O., Hjelmquist, G. and Engstr?m, L. (1974) Biochim. Biophys. Acta 358, 289--298). However, other factors also influence the enzyme activity in a similar manner and it remains to be demonstrated that the regulation of hepatic pyruvate kinase by glucagon and cyclic AMP in vivo involes a phosphorylation.  相似文献   

19.
In order to observe the effect of the adrenergic system on pancreatic glucagon secretion in the isolated perfused rat pancreas, phenylephrine, an alpha-adrenergic agonist, and isoproterenol, a beta-adrenergic agonist, were added to the perfused solution. 1.2 microM phenylephrine suppressed glucagon secretion at 2.8 mM glucose, and it also decreased insulin secretion at 11.1 mM glucose. 240 nM isoproterenol enhanced glucagon secretion not only at 2.8 mM glucose, but also at 11.1 mM glucose, as well as insulin secretion at 11.1 mM. In order to study the role of intra-islet noradrenalin, phentolamine, an alpha-adrenergic antagonist, and propranolol, a beta-adrenergic antagonist, were infused with the perfused solution. 10 and 100 microM phentolamine caused an increase in insulin secretion, and 25 microM propranolol decreased insulin secretion, while they did not cause any change in glucagon secretion. From these results, it can be concluded that alpha-stimulation suppresses not only insulin but also glucagon secretion, while beta-stimulation stimulates glucagon secretion, as well as insulin secretion. Intra-islet catecholamine may have some effect on the B cell, whereas it seems to have no influence on the A cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号