首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of 5-fluorouracil, topotecan, or gemcitabine was tested for enhancement of the effects of low dose rate (LDR) irradiation in an in vitro model for hepatocellular carcinoma. For comparison, all drugs were tested in combination with high dose rate (HDR) gamma-irradiation as well. Multicellular spheroids of HepG2 cells were exposed to HDR or LDR irradiation by means of external beam cobalt-60 or rhenium-188 (188Re), respectively, dissolved in the culture medium. Secondly, exposure to irradiation was combined with the cytotoxic drug. Toxicity was evaluated by means of a quantitative spheroid outgrowth assay and histology. For 5-fluorouracil, supra-additive effects were observed in combination with HDR irradiation. With 188Re, the supra-additive toxicity was only transient. For topotecan and 188Re, no supra-additive effects were seen, whereas the addition of HDR irradiation at the end of the topotecan exposure yielded lasting supra-additive effects. Incubation with gemcitabine followed by exposure to HDR irradiation, induced a synergistic toxicity on the outgrowth. No supra-additive effects were observed when HDR irradiation was added at the start of the incubation with gemcitabine or combined with LDR irradiation. For all drugs tested, supra-additive effects were observed with HDR irradiation if the timing of the irradiation was appropriate. For 188Re, no lasting supra-additive effects were observed.  相似文献   

2.

Objective

To build an in vitro-perfused, three-dimensional (3D) spheroid model based on the TissueFlex system for anti-cancer drug efficacy testing in order to mimic avascular micro-tissues with inherent O2, nutrient and metabolite gradients, and to provide a more accurate prediction of drug toxicity and efficacy than traditional in vitro tumour models in conventional static culture well plates.

Results

The perfused cancer spheroid model showed higher cell viability and increased diameter of spheroids over a relatively long culture period (17 days). Three anti-cancer drugs with different cytotoxic mechanisms were tested. In perfusion, lower cytotoxicity was observed for traditional cytotoxic drug 5-fluorouracil and microtubule-interfering, paclitaxel, showed greater interruption of spheroid integrity. For the hypoxic-dependent drug, tirapazamine, there was no significant difference observed between static and perfusion cultures.

Conclusion

The perfusion culture provides a better homeostasis for cancer cell growth in a more controllable working platform for long-term drug testing.
  相似文献   

3.
The movement and internalization of 3H-labelled cells and of inert polystyrene microspheres within multicellular spheroids has been examined through histological sectioning and autoradiography. EMT6 and RIF-1 spheroids were cultured in spinner flasks for approx. 2.5 weeks. At this time, 3H-labelled cells and/or microspheres were allowed to adhere to the spheroid surface. Microspheres, 3H-labelled RIF-1 monolayer cells and 3H-labelled EMT6 monolayer cells were observed to move centripetally as a wave into EMT6 spheroids. In contrast, 3H-labelled trypsinized RIF-1 and EMT6 spheroid cells became mixed with the other non-labelled spheroid cells in homotypic RIF-1 and EMT6 spheroids, respectively. Reduction of spheroid growth by maintaining the spheroids at room temperature and by treatment with 2500 rads irradiation did not prohibit the internalization of 3H-labelled EMT6 cells and microspheres in EMT6 spheroids.  相似文献   

4.
The effect of combined ultrasound and heat treatments on Chinese hamster multicellular spheroids of varying size was investigated using growth rate, single cell survival and ultrastructural damage as endpoints. Ultrasonic irradiation at 37 degrees C had no effect on the growth rate of 200-730 microns spheroids. Similarly there was no effect on the growth rate of 350 microns spheroids when irradiated during a 60 min exposure to 41.5 degrees C. However, spheroids of 200-700 mm diameter showed growth delay when held at 43 degrees C for 1 h. The effect was enhanced with concomitant ultrasound irradiation but was not dependent on spheroid size. When 200 and 400 microns spheroids held at 43 degrees C for 60 min were irradiated with different ultrasonic intensities a dose-dependent decrease in surviving fraction and a dose-dependent increase in growth delay was obtained. When surviving fraction was plotted as a function of growth delay a good correlation was obtained, suggesting that the combination of heat and ultrasound irradiation does not produce cytostasis in the surviving cells of either 200 or 400 microns spheroids. At the ultrastructural level increased cytoplasmic vacuolation was the only result of ultrasonic irradiation at 37 degrees C. Exposure to 43 degrees C for 60 min was required to elicit thermal damage. This took the form of membrane evagination at the spheroid surface, vacuolation of the cytoplasm, grouping of organelles around the periphery of the nucleus, and fragmentation of the nucleolus. These effects were enhanced with concomitant ultrasonic irradiation but other features were also noted, viz. disaggregation of polyribosomes, dilation of the rough endoplasmic reticulum and blebbing of the nuclear membrane. Damage was independent of spheroid size. These results are in agreement with previous data obtained from single-cell studies. Indicating that there is a non-thermal, non-cavitational component to the cell killing in multicellular spheroids resulting from combined heat and ultrasound treatment.  相似文献   

5.

Background

Three-dimensional (3D) in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening.

Methods

Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100–300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin) and nanoparticle (NLC) were done using spheroids.

Results

IC50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin) in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro.

Conclusion

The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.  相似文献   

6.
BackgroundTherapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG.Methods1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed.ResultsWe found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth.ConclusionsComparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis.General significanceOur results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.  相似文献   

7.
Clinically relevant in vitro methods are needed to identify new cancer drugs for solid tumors. We report on a new 3-D spheroid cell culture system aimed to mimic the properties of solid tumors in vivo. The colon cancer cell lines HCT-116 wt and HCT-116 wt/GFP were grown as monolayers and for 3 or 6 days on 96-well NanoCulture® plates to form spheroids. Expression of surface markers, genes and hypoxia were assessed to characterize the spheroids and drug induced cytotoxicity was evaluated based on fluorescein diacetate (FDA) conversion by viable cells to fluorescent fluorescein or by direct measurement of fluorescence of GFP marked cells after a 72 h drug incubation. The cells reproducibly formed spheroids in the NanoCulture® plates with tight cell-attachment after 6 days. Cells in spheroids showed geno- and phenotypical properties reminiscent of hypoxic stem cells. Monolayer cultured cells were sensitive to standard and investigational drugs, whereas the spheroids gradually turned resistant. Similar results for cytotoxicity were observed using simplified direct measurement of fluorescence of GFP marked cells compared with FDA incubation. In conclusion, this new 3-D spheroid cell culture system provides a convenient and clinically relevant model for the identification and characterization of cancer drugs for solid tumors.  相似文献   

8.
BackgroundMesenchymal stem cells (MSCs) have paradoxically been reported to exert either pro- or anti-tumor effects in vitro. Hyperthermia, in combination with chemotherapy, has tumor-inhibiting effects; however, its role, together with MSCs, so far is not well understood. Furthermore, a lot of research is conducted using conventional 2-dimensional in vitro models that do not mimic the actual tumor microenvironment.AimIn light of this fact, an indirect method of co-culturing human amniotic membrane-derived MSCs (AMMSCs) with collagen-encapsulated human lung carcinoma cells (A549) was performed using a 3-dimensional (3D) tumor-on-chip device.MethodsThe conditioned medium of AMMSCs (AMMSC-CM) or heat-treated AMMSCs (heat-AMMSC-CM) was utilized to create indirect co-culture conditions. Tumor spheroid growth characterization, immunocytochemistry and cytotoxicity assays, and anti-cancer peptide (P1) screening were performed to determine the effects of the conditioned medium.ResultsThe A549 cells cultured inside the 3D microfluidic chip developed into multicellular tumor spheroids over five days of culture. The AMMSC-CM, contrary to previous reports claiming its tumor-inhibiting potential, led to significant proliferation of tumor spheroids. Heat-AMMSC-CM led to reductions in both spheroid diameter and cell proliferation. The medium containing the P1 peptide was found to be the least cytotoxic to tumor spheroids in co-culture compared with the monoculture and heat-co-culture groups.ConclusionsHyperthermia, in combination with the anticancer peptide, exhibited highest cytotoxic effects. This study highlights the growing importance of 3D microfluidic tumor models for testing stem-cell-based and other anti-cancer therapies.  相似文献   

9.
Nutrient concentration in the growth medium and trypsin affect cellular radiosensitivity in a manner that is related to cell shape (Reddy, Stevenson, and Lange, Int. J. Radiat. Biol. 55, 105-117 (1989); Reddy and Lange, Radiat. Res. 119, 338-347 (1989]. Hence we hypothesized that the concentration of serum in the medium could influence the X-ray sensitivity of cells and that the spread cells in monolayers and round cells in spheroids may differ in their response to the radiosensitizing effect of trypsin. We compared the X-ray sensitivity of monolayer and spheroid cells grown for 19 +/- 1 h in MEM supplemented with 5 or 15% serum. Cells were trypsinized and plated either immediately before, or 2.5 +/- 0.5 h after, irradiation and incubation for repair in situ. Survival of cells in monolayers and in spheroids was higher in MEM with 5% serum than with 15% serum. Trypsin treatment affected the shape and radiosensitivity of cells in monolayers but not in spheroids. When all cells were grown in the same serum concentration and a 2.5-h postirradiation incubation was allowed prior to trypsinization, the X-ray sensitivity of cells in spheroids was greater than that of cells in monolayers. The survival of cells in spheroids became equal to that of monolayer cells when cells in spheroids were converted to monolayers by placing them in 25-cm2 flasks and allowing them 3 h to attach and spread. Cell cycle distributions were nearly the same in monolayers and spheroids cultured in MEM with 5 or 15% serum. We conclude that: (1) serum concentration in the growth medium and trypsin do appear to contribute to the differences in the radiosensitivity of spheroids and monolayer V79 cells; (2) these differences are associated with changes in cell morphology.  相似文献   

10.
Cells growing in tissue culture as three-dimensional, multicellular aggregates called 'spheroids' typically show a decreasing growth fraction and development of quiescent subpopulations as the spheroids enlarge. Kinetic studies in a number of spheroid systems have indicated that the primary reason for the tumour-like growth is a progressive decrease in growth fraction, with only a modest elongation of cell cycle time in larger spheroids. In this paper, the cellular growth kinetics for spheroids of V79 Chinese hamster lung cells are reviewed, and the regrowth kinetics of cells resuming growth after recovery from quiescent regions of the spheroids are described. Further, the role of regrowth/repopulation in determining the spheroid response to anti-tumour cytotoxics is explored, with particular emphasis on treatment with cisplatin and etoposide. By separating the effects of cytotoxicity and regrowth in the overall spheroid response to anti-neoplastic drugs, it is suggested that 'drug resistance' in tumours can be a kinetic as well as a genetic problem.  相似文献   

11.
Abstract. Cells growing in tissue culture as three-dimensional, multicellular aggregates called 'spheroids' typically show a decreasing growth fraction and development of quiescent subpopulations as the spheroids enlarge. Kinetic studies in a number of spheroid systems have indicated that the primary reason for the tumour-like growth is a progressive decrease in growth fraction, with only a modest elongation of cell cycle time in larger spheroids. In this paper, the cellular growth kinetics for spheroids of V79 Chinese hamster lung cells are reviewed, and the regrowth kinetics of cells resuming growth after recovery from quiescent regions of the spheroids are described. Further, the role of regrowth/repopulation in determining the spheroid response to anti-tumour cytotoxics is explored, with particular emphasis on treatment with cisplatin and etoposide. By separating the effects of cytotoxicity and regrowth in the overall spheroid response to anti-neoplastic drugs, it is suggested that 'drug resistance' in tumours can be a kinetic as well as a genetic problem.  相似文献   

12.
The response of 9L spheroids to irradiation with single and split doses of X rays has been investigated. Irradiation with single doses caused a dose-dependent decrease in spheroid growth rate, which eventually returned to the growth rate for unirradiated spheroids. This delay appeared to be related to cell survival. When spheroids were irradiated with two 4-Gy doses of X rays separated by various times the amount of growth delay was intermediate between that observed with single doses of 4 and 8 Gy. For relatively short times (15-90 min), recovery probably resulted from repair processes, but for longer times (up to 24 hr), recovery also appeared to depend on cellular redistribution and repopulation effects.  相似文献   

13.
Lin RZ  Lin RZ  Chang HY 《Biotechnology journal》2008,3(9-10):1172-1184
Many types of mammalian cells can aggregate and differentiate into 3-D multicellular spheroids when cultured in suspension or a nonadhesive environment. Compared to conventional monolayer cultures, multicellular spheroids resemble real tissues better in terms of structural and functional properties. Multicellular spheroids formed by transformed cells are widely used as avascular tumor models for metastasis and invasion research and for therapeutic screening. Many primary or progenitor cells on the other hand, show significantly enhanced viability and functional performance when grown as spheroids. Multicellular spheroids in this aspect are ideal building units for tissue reconstruction. Here we review the current understanding of multicellular spheroid formation mechanisms, their biomedical applications, and recent advances in spheroid culture, manipulation, and analysis techniques.  相似文献   

14.
Summary Adult rat hepatocytes formed spherical multicellular aggregates (spheroids) when they were cultured in the pores of polyurethane foam (PUF). The diameter of the spheroids was within the range 100–200 m. These spheroids partly attached and immobilized in the PUF pores for at least 2 weeks. The albumin production rate by the spheroids increased up to 17.0 g/106 nuclei per day during the first 6 days and maintained at a high level for 2 weeks. In contrast, the albumin production rate by the monolayer markedly decreased after 3 days. The spheroid culture using PUF seems to be a convenient and simple method for maintaining some differentiated functions of hepatocytes and for making a bioreactor using the function of spheroids. Offprint requests to: K. Funatsu  相似文献   

15.

Background

Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.

Methodology/Principal Findings

We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.

Conclusions/Significance

Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.  相似文献   

16.
Abstract. Growth data on 60 multicellular spheroids of MCF-7 human breast cancer cells were fitted, on an individual basis, by the Gompertz, Bertalanffy and logistic equations. MCF-7 spheroids, initiated and grown in medium containing oestrogens, exhibited a growth rate that decreased continuously as spheroid size increased. Plots of spheroid volume v. time generated sigmoid curves that showed an early portion with an approximately exponential volume increase; a middle region or retardation phase characterized by a continuously decreasing growth rate; and, finally, a late segment or plateau phase approaching zero growth rate, that permitted an estimate of the maximum spheroid size (Vmax). Growth curves generated by MCF-7 spheroids under different experimental conditions (hormones, drugs and radiation exposures) can be compared after normalization. Linearized forms of the fitted Gompertz curves provided a convenient way to express differences in growth rate.  相似文献   

17.
Adult rat hepatocytes formed floating multicellular spheroids, when they were cultured with proteoglycan fraction isolated from rat liver reticulin fibers. Cells in the spheroid showed only low growth activity. Albumin production by the spheroids increased up to 1.5 micrograms/micrograms DNA/day (180 micrograms/mg Protein/day) during the first 6 days and remained constant thereafter. In contrast, the albumin production by the monolayer markedly decreased after 4 days. The spheroid culture appears to be more suitable than the monolayer in studying differentiated functions of adult hepatocytes.  相似文献   

18.
19.
Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.  相似文献   

20.
Organ-like microenviroment and 3-dimensional (3D) cell culture conformations have been suggested as promising approaches to mimic in a micro-scale a whole organ cellular functions and interactions present in vivo. We have used this approach to examine biologic features of hepatocellular carcinoma (HCC) cells. In this study, we demonstrate that hepatocellular carcinoma (HCC) cells, fibroblasts, endothelial cells and extracellular matrix can generate organoid-like spheroids that enhanced numerous features of human HCC observed in vivo. We show that the addition of non-parenchymal cells such as fibroblast and endothelial cells is required for spheroid formation as well as the maintenance of the tissue-like structure. Furthermore, HCC cells cultured as spheroids with non-parenchymal cells express more neo-angiogenesis-related markers (VEGFR2, VEGF, HIF-α), tumor-related inflammatory factors (CXCR4, CXCL12, TNF-α) and molecules-related to induced epithelial-mesenchymal transition (TGFβ, Vimentin, MMP9) compared with organoids containing only HCC cells.

These results demonstrate the importance of non-parenchymal cells in the cellular composition of HCC organoids. The novelty of the multicellular-based organotypic culture system strongly supports the integration of this approach in a high throughput approach to identified patient-specific HCC malignancy and accurate anti-tumor therapy screening after surgery.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号