首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the effects of polyamines on oligomycin-sensitive ATPase activity of ox heart submitochondrial particles showed that, of the polyamines tested, only spermine affected the enzyme activity. Spermine within the physiological concentration range increased the Vmax. of the enzyme, but the Km for ATP was virtually unaffected. Binding studies of [14C]spermine to submitochondrial particles, under the same conditions as used for the ATPase assay, showed that the spermine binds to submitochondrial particles in a co-operative way; Hill plots of the data gave a Hill coefficient of 2 and a Kd of 8 microM. When submitochondrial particles were treated with trypsin, ATPase was not stimulated by spermine and the amount of spermine bound concomitantly was drastically decreased. The ATPase activity of isolated F1-ATPase was not affected by spermine. Removal of the natural protein ATPase inhibitor did not suppress either the stimulation of the ATPase activity by spermine or the spermine binding to the particles. The results obtained suggested that the polyamine binds and acts at the level of the liaison between the coupling factor F1 and the membrane sector F0 of the ATPase complex.  相似文献   

2.
A fragment of Escherichia coli chromosome containing the intact threonine operon or its distinct genes has been cloned on the pBR322 plasmid. This fragment has been mapped using some restriction endonucleases. Cloning results in an increased level of appropriate enzyme activity in cells containing hybrid plasmids. Those carrying the complete threonine operon are capable of accumulating threonine up to 5 g/l in culture medium during 48 h. When multi-copy plasmids are used for gene cloning, interpretation of experiments aimed at transformation of auxotrophic bacterial strains, might be complicated. For example, transformation of appropriate threonine auxotrophs by a hybrid plasmid carrying mutation in the threonine gene, might result in prototrophic phenotype. It is possible that the great amount of mutant enzyme molecules compensated their low activity. On the contrary, the presence of a gene within the plasmid, as shown by restriction and biochemical analysis, did not always ensure the growth on a minimal medium of auxotrophs transformed by this plasmid.  相似文献   

3.
Regulation of expression of a bacterial guaA gene inserted into colicin E1 DNA by an in vitro recombination was studied under various growth conditions. In Escherichia coli K-12 cells that carried this hybrid ColEl plasmid the level of guaA enzyme activity was not regulated by the concentration of guanine in the medium, but by the number of plasmid DNA copies. The optimal conditions for amplifying the guaA gene product by chloramphenicol treatment were determined. The level of guaA enzyme activity found under the optimal conditions was about 37 times that in extracts of wild-type E. coli cultured in guanine-free medium. The properties of the promoter for the guaA gene and applicability of this hybrid ColEl plasmid for amplification of various gene products were discussed.  相似文献   

4.
Transfection efficiency in reporter gene assays is usually determined by cotransfection of a reference reporter gene under the control of a constitutively active strong promoter and determination of the reference enzyme activity. The SV40 promoter-driven beta-galactosidase reporter plasmid is frequently used as the reference reporter plasmid. Here we show that the beta-galactosidase expression in different cell lines does not correctly reflect the amount of plasmid taken up by cells and thus is not an accurate measure of transfection efficiency. The direct determination of introduced plasmid concentration in lysates of transfected cells is suitable for monitoring the transfection efficiency in reporter gene assays even if different cell lines are compared.  相似文献   

5.
The P1 ParA protein is an ATPase that recognizes the parA promoter region where it acts to autoregulate the P1 parA–parB operon. The ParB protein is essential for plasmid partition and recognizes the cis -acting partition site parS . The regulatory role of ParA is also essential because a controlled level of ParB protein is critical for partition. However, we show that this regulatory activity is not the only role for ParA in partition. Efficient partition can be achieved without autoregulation as long as Par protein levels are kept within a range of low values. The properties of ParA mutants in these conditions showed that ParA is essential for some critical step in the partition process that is independent of par operon regulation. The putative nucleotide-binding site for the ParA ATPase was identified and disrupted by mutation. The resulting mutant was substantially defective for autoregulation and completely inactive for partition in a system in which the need for autoregulation is abolished. Thus, the ParA nucleotide-binding site appears to be necessary both for the repressor activity of ParA and for some essential step in the partition process itself. We propose that the nucleotide-bound form of the enzyme adopts a configuration that favours binding to the operator, but that the ATPase activity of ParA is required for some energetic step in partition of the plasmid copies to daughter cells.  相似文献   

6.
Deoxycoformycin-resistant rat hepatoma cells exhibit up to a 2000-fold increase in adenosine deaminase activity compared to the sensitive parental cells. The increased enzyme activity in these cells is accompanied by similar increases in 1) the amount of adenosine deaminase protein, 2) the relative rate of adenosine deaminase synthesis in vivo, and 3) adenosine deaminase mRNA activity. To further investigate the mechanism(s) responsible for the overproduction of adenosine deaminase in these cells, we have isolated a recombinant plasmid containing a 1.4-kilobase insert complementary to at least part of the adenosine deaminase mRNA. Using this cDNA as a specific hybridization probe, all deoxycoformycin-resistant variants were shown to have increased amounts of adenosine deaminase mRNA and gene sequences. The relative increase in the level of mRNA and gene copy number was similar to the relative increase in enzyme activity for most resistant cell lines. However, the degree of adenosine deaminase gene amplification in one deoxycoformycin-resistant cell line (6-10-200) was 3-4-fold less than the relative increase in adenosine deaminase mRNA. These results indicate that the increased adenosine deaminase activity in deoxycoformycin-resistant rat hepatoma cells is due in large part, but not exclusively, to gene amplification.  相似文献   

7.
The ATPase activity of Zajdela hepatoma and Yoshida sarcoma submitochondrial particles was several times lower than the enzyme activity in rat heart and rat liver submitochondrial particles. The content of F1-ATPase in the tumor mitochondria was found not to be very different from that in mitochondria of rat liver. Immunochemical determination of the amount of the natural ATPase inhibitor revealed that the tumor mitochondria contain 2-3-times more ATPase inhibitor than control mitochondria. It is concluded that the low ATPase activity of the tumor mitochondria results from the inhibition of the enzyme activity by the natural ATPase inhibitor.  相似文献   

8.
The Escherichia coli plasmid pDXX1 codes for a new restriction-modification system. The specific restriction endonuclease coded by this system has been purified by a procedure that includes phosphocellulose and heparin-agarose chromatography. Sedimentation on glycerol gradients showed one peak of activity with a value of about 12 S. The highly purified enzyme require ATP and Mg2+ for activity as well as S-adenosylmethionine, although some S-adenosylmethionine molecules are probably bound to the enzyme. The enzyme does not cleave lambda DNA at well-defined sites and has a strong non-modified DNA-dependent ATPase activity. The enzyme has also methylase activity acting against non-modified DNA.  相似文献   

9.
Recombinant plant plasma membrane H(+)-ATPase has been produced in a yeast expression system comprising a multicopy plasmid and the strong promoter of the yeast PMA1 gene. Western blotting with a specific monoclonal antibody showed that the plant ATPase is one of the major membrane proteins made by the transformed cells, accounting for about 1% of total yeast protein. The plant ATPase synthesized in yeast is fully active. It hydrolyzes ATP, pumps protons, and the reaction cycle involves a phosphorylated intermediate. Phosphorylation is possible from both ATP and Pi. Unlike the situation in plants, however, most of the plant ATPase is not expressed in the yeast plasma membrane. Rather, the enzyme appears to remain trapped at a very early stage of secretory pathway: insertion into the endoplasmic reticulum. This organelle was observed to proliferate in the form of stacked membranes surrounding the yeast nucleus in order to accommodate the large amount of plant ATPase produced. In this location, the plant ATPase can be purified with high yield (70 mg from 1 kg of yeast) from membranes devoid of endogenous yeast plasma membrane H(+)-ATPase. This convenient expression system could be useful for other eukaryotic membrane proteins and ATPases.  相似文献   

10.
An apparent 'triphasic' alteration of 30S dynein ATPase activity was produced by treatment with various amounts of NEM when the modification and susequent ATPase assay were carried out at pH 7.4 and pH 10-10.2, respectively. The Mg-ATPase activity was markedly inhibited by modification of the most reactive SH groups with 10 microM NEM, although the same treatment had no significant effect on the activity when assayed at neutral pH. Increasing the NEM concentration to 0.3 mM largely restored the enzyme activity, but a further increase in NEM concentration inhibited the enzyme activity again. This unusual response of 30S dynein ATPase at pH 10-10.2 was accounted for by the results of Arrhenius plots of the enzyme activity at pH 10.1; the enzyme protein modified with not more than 10 microM NEM was not stable under the assay conditions (pH 10-10.2 at 25 degrees C), whereas modification with 0.3 mM NEM stabilized 30S dynein against the assay conditions. The possible significance of the 10 microM NEM-induced inhibition of the 30S dynein alkaline ATPase activity is discussed in connection with the participation of SH groups of 30S dynein in the enzyme activity.  相似文献   

11.
12.
Bengt  Silverin 《Journal of Zoology》1978,186(3):335-345
Enzymatic conditions in testes and seminal vesicles of the Pied flycatcher during the breeding season were studied by histochemical techniques. The following enzyme activities were studied: glucose-6-phosphatase dehydrogenase (G-6-PDH), NADPH2-diaphorase, glutamic dehydrogenase (GDH), NADH2-diaphorase, adenosine triphosphatase (ATPase) and acid phosphatase. Phospholipids and PAS-positive substances were also studied. Towards the end of the nest-building period, a time when the males showed maximal sexual activities, some enzyme activity changes were observed. There was an increase of the GDH activity in the sperm bundles, an increase of the ATPase activity in the interstitium and tunica propria of the tubuli seminiferi. The phospholipid content increased in all spermatogenetic cells and the PAS-positive material increased in the Sertoli cells and spermatozoa. The enzymic activities indicated a steroid production in the Leydig cells.
The epithelium of the seminal vesicles did not show any variations in enzyme activities as long as the Leydig cells persisted. Most enzymes showed a very high activity during this time, indicating a secretory function of the epithelium. The amount of phospholipids increased at the end of the nest-building period. Parallel with the degeneration of the epithelium the enzymic activities, as well as the phospholipid content, were lowered markedly.  相似文献   

13.
Acetyl-CoA carboxylase catalyzes the first committed step in the biosynthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase protein, a biotin carboxyl carrier protein, and a carboxyltransferase protein. In this report a system for site-directed mutagenesis of the biotin carboxylase component is described. The wild-type copy of the enzyme, derived from the chromosomal gene, is separated from the mutant form of the enzyme which is coded on a plasmid. Separation of the two forms is accomplished using a histidine-tag attached to the amino terminus of the mutant form of the enzyme and nickel affinity chromatography. This system was used to mutate four active site residues, E211, E288, N290, and R292, to alanine followed by their characterization with respect to several different reactions catalyzed by biotin carboxylase. In comparison to wild-type biotin carboxylase, all four mutant enzymes gave very similar results in all the different assays, suggesting that the mutated residues have a common function. The mutations did not affect the bicarbonate-dependent ATPase reaction. In contrast, the mutations decreased the maximal velocity of the biotin-dependent ATPase reaction 1000-fold but did not affect the Km for biotin. The activity of the ATP synthesis reaction catalyzed by biotin carboxylase where carbamoyl phosphate reacts with ADP was decreased 100-fold by the mutations. The ATP synthesis reaction required biotin to stimulate the activity in the wild-type; however, biotin did not stimulate the activity of the mutant enzymes. The results showed that the mutations have abolished the ability of biotin to increase the activity of the enzyme. Thus, E211, E288, N290, and R292 were responsible, at least in part, for the substrate-induced synergism by biotin in biotin carboxylase.  相似文献   

14.
15.
The rise in bacterial resistance to antibiotics demonstrates the medical need for new antibacterial agents. One approach to this problem is to identify new antibacterials that act through validated drug targets such as bacterial DNA gyrase. DNA gyrase uses the energy of ATP hydrolysis to introduce negative supercoils into plasmid and chromosomal DNA and is essential for DNA replication. Inhibition of the ATPase activity of DNA gyrase is the mechanism by which coumarin-class antibiotics such as novobiocin inhibit bacterial growth. Although ATPase inhibitors exhibit potent antibacterial activity against gram-positive pathogens, no gyrase ATPase activity from a gram-positive organism is described in the literature. To address this, we developed and optimized an enzyme-coupled phosphate assay and used this assay to characterize the ATPase kinetics of Streptococcus pneumoniae gyrase. The S. pneumoniae enzyme exhibits cooperativity with ATP and requires organic potassium salts. We also studied inhibition of the enzyme by novobiocin. Apparent inhibition constants for novobiocin increased linearly with ATP concentration, indicative of an ATP-competitive mechanism. Similar binding affinities were measured by isothermal titration calorimetry. These results reveal unique features of the S. pneumoniae DNA gyrase ATPase and demonstrate the utility of the assay for screening and kinetic characterization of ATPase inhibitors.  相似文献   

16.
PMA1 expression, plasma membrane H(+)-ATPase enzyme kinetics, and the distribution of the ATPase have been studied in carbon-starved Candida albicans induced with glucose for yeast growth at pH 4.5 and for germ tube formation at pH 6.7. PMA1 expression parallels expression of the constitutive ADE2 gene, increasing up to sixfold during yeast growth and twofold during germ tube formation. Starved cells contain about half the concentration of plasma membrane ATPase of growing cells. The amount of plasma membrane ATPase is normalized prior to either budding or germ tube emergence by the insertion of additional ATPase molecules, while ATPase antigen appears uniformly distributed over the entire plasma membrane surface during both growth phases. Glucose addition rapidly activates the ATPase twofold regardless of the pH of induction. The turnover of substrate molecules per second by the enzyme in membranes from budding cells quickly declines, but the enzyme from germ tube-forming cells maintains its turnover of substrate molecules per second and a higher affinity for Mg-ATP. The plasma membrane ATPase of C. albicans is therefore regulated at several levels; by glucose metabolism/starvation-related factors acting on gene expression, by signals generated through glucose metabolism/starvation which are thought to covalently modify the carboxyl-terminal domain of the enzyme, and possibly by additional signals which may be specific to germ tube formation. The extended period of intracellular alkalinization associated with germ tube formation may result from regulation of proton-pumping ATPase activity coupled with higher ratios of cell surface to effective cytosolic volume.  相似文献   

17.
The H+-translocating adenosine-5'-triphosphatase (ATPase) purified from the yeast Schizosaccharomyces pombe is inactivated upon incubation with the arginine modifier 2,3-butanedione. The inactivation of the enzyme is maximal at pH values above 8.5. The modified enzyme is reactivated when incubated in the absence of borate after removal of 2,3-butanedione. The extent of inactivation is half maximal at 10 mM 2,3-butanedione for an incubation of 30 min at 30 degrees C at pH 7.0. Under the same conditions, the time-dependence of inactivation is biphasic in a semi-logarithmic plot with half-lives of 10.9 min and 65.9 min. Incubation with 2,3-butanedione lowering markedly the maximal rate of ATPase activity does not modify the Km for MgATP. These data suggest that two classes of arginyl residues play essential role in the plasma membrane ATPase activity. Magnesium adenosine 5'-triphosphate (MgATP) and magnesium adenosine 5'-diphosphate (MgADP), the specific substrate and product, protect partially against enzyme inactivation by 2,3-butanedione. Free ATP or MgGTP which are not enzyme substrates do not protect. Free magnesium, another effector of enzyme activity, exhibits partial protection at magnesium concentrations up to 0.5 mM, while increased inactivation is observed at higher Mg2+ concentrations. These protections indicate either the existence of at least one reactive arginyl in the substrate binding site or a general change of enzyme conformation induced by MgATP, MgADP or free magnesium.  相似文献   

18.
It was found that the activity of spectrin-dependent ATPase of erythrocyte ghosts isolated from rats with alimentary deficiency of vitamin K was significantly increased as compared with control animals, whereas in rats kept on a vicasol-rich diet this parameter was unchanged. In vitamin K-deficient rats the amount of proteins loosely bound to erythrocyte membranes was significantly reduced. At the same time, the activity of the integral enzyme (Na, K-ATPase) did not depend on the vitamin K provision despite the fact that in vitamin K-deficient animals kept on a vicasol-rich diet the enzyme affinity for ouabain was strongly decreased as compared with control. It was suggested that this effect might be due to the changes in the lipid and protein environment of the membrane-bound enzyme. Administration of the antivitamin K, pelentane, did not induce any conspicuous changes in the enzyme activities. It was concluded that antivitamin K does not induce any modification of the properties of erythrocyte-linked enzymes observed under conditions of vitamin K deficiency.  相似文献   

19.
We have determined effect of the oxidant peroxynitrite (ONOO-) on Ca2+-dependent matrix metalloprotease-2 (MMP-2) activity and the role of the protease on Ca2+ ATPase activity in bovine pulmonary vascular smooth muscle plasma membrane under ONOO- -triggered conditions. The smooth muscle plasma membrane possesses a 72-kDa protease activity in a gelatin-containing zymogram. The 72-kDa protease activity has been found to be inhibited by tissue inhibitor of metalloprotease-2 (TIMP-2), indicating that the protease is the matrix metalloprotease-2 (MMP-2). Treatment of the membrane suspension with ONOO- caused stimulation of the MMP-2 activity (as evidenced by 14C-gelatin degradation) and also increased Ca2+ ATPase activity. The ONOO- -triggered protease activity and the Ca2+ ATPase activity were found to be inhibited by the antioxidants: vitamin E, thiourea, and mannitol. Pretreatment with catalase and superoxide dismutase did not significantly alter ONOO- -stimulated MMP-2 activity and Ca2+ATPase activity, indicating that peroxide and superoxide are not present in appreciable amount in ONOO-. Under both basal and ONOO- triggered conditions, the MMP-2 activity and the Ca2+ ATPase activity were also inhibited by EGTA, 1:10-phenanthroline, and TIMP-2. However, the ONOO- -stimulated MMP-2 activity and the Ca2+ ATPase activity were found to be insensitive to phenylmethylsulfonylfluoride, Bowman-Birk inhibitor, chymostatin, leupeptin, antipain, N-ethylmaleimide, and pepstatin. These results suggest that ONOO- caused stimulation of MMP-2 activity and that the increased MMP-2 activity subsequently played a pivotal role in stimulating Ca2+ ATPase activity in bovine pulmonary vascular smooth muscle plasma membrane.  相似文献   

20.
The (Na+ plus K+)-ATPase activities in salt gland homogenates increased 3- to 4-fold after saline treatment of ducks for 3 weeks. The ATPase was purified to a specific activity of 460 and 1015 mumol Pi/mg protein per h, respectively, in control and saline-treated ducks. The catalytic protein was identified on polyacrylamide electrophoresis gels by phosphorylating the enzyme with (32P)ATP. The molecular weight of the protein was estimated to be 98 000. The amount of catalytic unit increased commensurately with the enzyme activity after saline treatment. It is therefore concluded that the increased enzyme activity is due to a de novo enzyme synthesis and is not an activation effect. Phospholipid concentration in the salt gland tissue increased 1.7-fold after the saline treatment. Significant increases occurred in the percentage of the total phospholipids as phosphatidylserine and sphingomyelin. In the partially purified (Na+ plus K+)-ATPase preparation, the percentage composition of phosphatidylserine and phosphatidylethanolamine increased after saline treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号