首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome breakage and rejoining of sister chromatids in Bloom's syndrome   总被引:2,自引:0,他引:2  
The occurrence of chromosome breaks and reunion of sister chromatids in lymphocytes of two patients with Bloom's syndrome has been compared with those found in X-rayed and control cells. The distribution of breaks in BS is non-random both between and within chromosomes, the centric regions of certain chromosomes being preferentially involved. The following working hypotheses are put forward: When chromosome breaks in human lymphocytes occur in G0— G1, practically no sister chromatid reunion (SCR) takes place, whereas ends created by an S—G2 break show a considerable tendency to SCR. We propose further that chromosome aberrations in BS mainly result from breaks in S—G2, including possible U-type rejoining of sister chromatid exchanges. Fragments extra to an intact chromosome complement result from a chromatid break or an asymmetrical chromatid translocation in a previous mitosis.  相似文献   

2.
Quantitative and qualitative estimates of chromosomal damage in roots of Crepis capillaris were made in metaphase cells at many time intervals after irradiation with 200 or 400 rad of 60Co gamma-rays. The results have confirmed the general pattern described for cells of other organisms, and have revealed in addition the following new facts. (1) The formation of aberrations of chromosome and chromatid type is not determined by the time of chromosome duplication alone. (2) The relative frequencies of different types of discontinuity form peaks with the following time succession: single gaps, chromatid breaks, isolocus breaks. (3) The location of peaks does not depend on the radiation dose, and shows no correlation which the time of synthesis. (4) Irradiation of G2 induces a significant number of chromosome-type exchanges in Crepis. (5) Higher doses of radiation in G2 favour the formation of chromatid over chromosome exchanges and of isochromatid breaks over chromosome breaks. A new interpretation of the production of certain types of aberration is discussed.  相似文献   

3.
The effects of adriamycin (AM) on DNA repair replication, the frequency of sister-chromatid exchange (SCE), the rate of cell proliferation and the frequency of DNA strand breaks were studied in human cells in vitro. No repair replication was observed in lymphocytes exposed to AM in concentrations up to 10?3 moles/1. DNA repair replication induced by UV and alkylating agents was not affected by a concentration of AM that completely inhibited cell proliferation (10?6 moles/1).Fibroblasts exposed to AM at 10?4 moles/1 in the presence of hydroxyurea showed an increase of strand breaks and cross-links in DNA. When AM was added to UV-irradiated fibroblasts, there was an increase of DNA strand breaks in addition to the breaks caused by UV alone. Similar effects were observed in lymphocytes.A dose-dependent increase of SCE was observed in lymphocytes exposed to low concentrations of AM (<10?7 moles/1). At higher concentrations the increase of SCE levelled off, and cell proliferation became severely inhibited. There was no evidence of removal of SCE-inducing damage in cells exposed to AM during G0 or G1. The level of SCE induced in the third cell cycle after treatment with AM was not different from that induced during the first two cell cycles.These results suggest that the various genotoxic and cytotoxic effects of AM are caused by different types of cellular damage. Moreover, AM-induced DNA damage persists for several cell cycles in human cells in vitro and seems to be resistant to repair activity.  相似文献   

4.
Summary Human tumor cells, after x-irradiation during the G2 phase of the cell cycle, show an abnormally high frequency of persistent chromatid breaks and gaps resulting from deficient DNA repair. Addition of a single human chromosome 11 from normal fibroblasts by micro-cell fusion to cell lines from six different tumors resulted in efficient repair of the radiation-induced damage to the level in normal cells. For one of the cell lines, addition of the long arm of chromosome 11 was sufficient to restore repair efficiency. In four of the six tumor lines, restoration of efficient DNA repair by chromosome 11 was associated with tumor suppression in nude mice. These results suggest that chromosome 11 carries a DNA repair gene or genes that complement the repair deficiency of tumor cells and that this gene for at least one tumor is localized to the long arm.  相似文献   

5.
Two L5178Y (LY) murine lymphoma cell sublines, LY-R, resistant, and LY-S, sensitive, to X-irradiation display inverse cross-sensitivity to camptothecin (CPT): LY-R cells were more susceptible to this specific topoisomerase I inhibitor than LY-S cells. After 1 h incubation with CPT, the doses that inhibited growth by 50 per cent (ID50) after 48 h of incubation were 0·54μM for LY-R cells and 1·25 μM for LY-S cells. Initial numbers of DNA–protein crosslinks (DPCs) measured at this level of growth inhibition were two-fold higher in LY-R (5·6 Gray-equivalents) than in LY-S cells (3·1 Gray-equivalents), which corresponds well with the greater in vitro sensitivity of Topo I from LY-R cells to CPT.1,2 Conversely, the initial levels of single-strand DNA breaks (SSBs) and double-strand DNA breaks (DSBs) were lower in LY-R cells (4·2 Gray-equivalent SSBs and 5·8 Gray equivalent DSBs) than in LY-S cells (8·0 Gray-equivalent SSBs and 12·0 Gray-equivalent DSBs). Dissimilarity in the replication-dependent DNA damage observed after 1 h of treatment with CPT was not due to a difference in the rate of DNA synthesis between the two cell lines, but may have arisen from a substantially slower repair of DNA breaks in LY-S cells.3 Release from G2 block by caffeine co-treatment significantly increased cell killing in the LY-S subline, and only slightly inhibited growth of LY-R cells. These results show that after CPT treatment cells arrest in G2, allowing them time to repair the long-lived DSBs. As LY-S cells are slower in repairing the DSBs, they were more susceptible to CPT in the presence of caffeine.  相似文献   

6.
Effects of chlorambucil on human chromosomes   总被引:1,自引:0,他引:1  
No significant amount of chromosomal damage was found in the 48-h cultures of lymphocytes of 18 patients who had been treated with the bifunctional alkylating agent chlorambucil (CBC). However, there was suggestive evidence of chromatid damage (i.e. of types attributable to damage during or after DNA synthesis in the cell cycle). In marrow cells of 3 patients given a single large dose of chlorambucil (equivalent to 2 days' normal treatment) there was also suggestive evidence of induced chromatide-type damage.Extensive series of in vitro experiments yielded evidence that (a) exposure of human lymphocytes over the whole period of culture showed chromatid-type damage; (b) this damage increased sharply from concentrations of 0.5 μg/ml to3.0 μg/ml; (c) although chromatide-type damage always predominated, there was suggestive evidence also of chromosome-type aberrations attributable to damage occuring in the G0/G1 period, although some or all of this could be attributed to “derived” chromatid damage; (d) even if lymphocytes were only exposed during the G0 or G1 periods of the cycle, damage was found in the subsequent metaphases and it was almost entirely of the chromatid type; (e) much more damage occurred in lymphocytes exposed for varying periods to the drugs after stimulation by phytohaemagglutinins than in those exposed in whole blood, or in medium before stimulation; (f) damaged occurred in lymphocytes exposed to the drug while in S but not exposed only when in G2; (g) no evidence was found that unschaduled DNA synthesis during G0 or G1 was induced by the drug; (h) there appeared to be no delay caused by the drug in the time at which cells reached the first “S” phase in culture but there was some evidence consistent with prolongation of “S” in cells exposed in culture; (i) there was evidence that CBC alone could stimulate lymphocyte tto DNA synthesis, and that a few cells proceeded in the cycle to prophase, or even metaphase. However, there was a considerable amount of cell-killing during CBC-stimulated DNA synthesis.  相似文献   

7.
V(D)J rearrangement in lymphoid cells involves repair of double-strand breaks (DSBs) through non-homologous end joining (NHEJ). Defects in this process lead to increased radiosensitivity and severe combined immunodeficiency (RS-SCID). Here, a SCID patient, M3, is described with a T?B+NK+ phenotype but without causative mutations in CD3δ, ?, ζ or IL7Rα, genes specifically involved in T cell development. Clonogenic survival of M3 fibroblasts showed an increased sensitivity to the DSB-inducing agents ionizing radiation and bleomycin, as well as the crosslinking compound, mitomycin C. We did not observe inactivating mutations in known NHEJ genes and results of various DSB-repair assays in G1 M3 cells were indistinguishable from those obtained with normal cells. However, we found increased chromosomal radiosensitivity at the G2 phase of the cell cycle. Checkpoint analysis indicated functional G1/S and intra-S checkpoints after irradiation but impaired activation of the “early” G2/M checkpoint. Together these results indicate a novel class of RS-SCID patients characterized by the specific absence of T lymphocytes and associated with defects in G2-specific DSB repair. The pronounced G2/M radiosensitivity of the RS-SCID patient described here, suggests a defect in a putative novel and uncharacterized factor involved in cellular DNA damage responses and T cell development.  相似文献   

8.
The topoisomerase IIα inhibitor etoposide is a ‘broad spectrum’ anticancer agent and a potent inducer of DNA double strand breaks. DNA damage response of mammalian cells usually involves cell cycle arrest and DNA repair or, if unsuccessful, cell death. We investigated these processes in the human colon cancer cell line HT-29 treated with three different etoposide regimens mimicking clinically relevant plasma concentrations of cancer patients. Each involved a period of drug-free incubation following etoposide exposure to imitate the decline of plasma levels between the cycles of chemotherapy. We found a massive induction of double strand breaks that were rapidly and nearly completely fixed long before the majority of cells underwent apoptosis or necrosis. An even greater percentage of cells lost clonogenicity. The occurrence of double strand breaks was accompanied by a decrease in the levels of Ku70, Ku86 and DNA-PKcs as well as an increase in the level of Rad51 protein. Twenty-four hours after the first contact with etoposide we found a pronounced G2/M arrest, regardless of the duration of drug exposure, the level of double strand breaks and the extent of their repair. During the subsequent drug-free incubation period, the loss of clonogenicity correlated well with the preceding G2/M arrest as well as with the amount of cell death found several days after exposure. However, it correlated neither with early apoptosis or necrosis nor with any of the other investigated parameters. These results suggest that the G2/M arrest is an important determinant in the cytostatic action of etoposide and that the removal of DNA double strand breaks is not sufficient to ensure cell survival.  相似文献   

9.
One of the major mechanisms by which measles virus (MV) infection causes disease and death is suppression of the immune response. The nonresponsiveness of MV-infected human lymphocytes to mitogens and a partial block in the G0/G1 phase of the cell cycle observed in vitro is thought to reflect in vivo immunosuppression. In order to molecularly dissect MV-induced immunosuppression, we analyzed expression of surface activation markers and cell cycle-regulatory proteins in MV-infected human T lymphocytes. MV Edmonston (MV-Ed) could induce and maintain a high level of the early activation marker CD69 in the absence of proliferation. Expression of cyclins D3 and E, which positively control entry into S phase, was also significantly decreased. Analysis of inhibitors of progression into S phase showed that a high level of p27 was maintained in the G0/G1-blocked subpopulation of MV-Ed-infected cells compared to the proliferating MV-infected cells. Furthermore, cell cycle-related upregulation of retinoblastoma (Rb) protein synthesis did not occur in the MV-Ed-infected lymphocytes. Acridine orange staining, which distinguishes cells in G0 from cells in G1, showed that RNA levels were not upregulated following activation, which is consistent with cells remaining in a G0 state. Although expression of surface activation markers indicated entry into the cycle, intracellular Rb and RNA levels suggested a quiescent state. These results indicate that MV can uncouple activation of T lymphocytes from transition of G0 to G1.  相似文献   

10.
Three human malignancy cell lines were irradiated with 60Co γ-rays. Initial chromatid breaks were measured by using the chemically induced premature chromosome condensation technique. Survival curves of cells exposed to gamma rays was linear-quadratic while the efficiency of Calyculin A in inducing PCC of G2 PCC was about five times more than G1 PCC. A dose-dependent increase in radiation-induced chromatid/isochromatid breaks was observed in G1 and G2 phase PCC and a nearly positive linear correlation was found between cell survival and chromatin breaks. This study implies that low LET radiation-induced chromatid/isochromatid breaks can potentially be used to predict the radiosensitivity of tumor cells either in in vitro experimentation or in in vivo clinical radiotherapy.  相似文献   

11.
Induction of DNA double strand breaks leads to phosphorylation and focus-formation of H2AX. However, foci of phosphorylated H2AX (γH2AX) appear during DNA replication also in the absence of exogenously applied injury. We measured the amount and the number of foci of γH2AX in different phases of the cell cycle by flow cytometry, sorting and microscopy in 4 malignant B-lymphocyte cell lines. There were no detectable γH2AX and no γH2AX-foci in G1 cells in exponentially growing cells and cells treated with PARP inhibitor (PARPi) for 24 h to create damage and reduce DNA repair. The amount of γH2AX increased immediately upon S phase entry, and about 10 and 30 γH2AX foci were found in mid-S phase control and PARPi-treated cells, respectively. The γH2AX-labeled damage caused by DNA replication was not fully repaired before entry into G2. Intriguingly, G2 cells populated a continuous distribution of γH2AX levels, from cells with a high content of γH2AX and the same number of foci as S phase cells (termed “G2H” compartment), to cells that there were almost negative and had about 2 foci (termed “G2L” compartment). EdU-labeling of S phase cells revealed that G2H was directly populated from S phase, while G2L was populated from G2H, but in control cells also directly from S phase. The length of G2H in particular increased after PARPi treatment, compatible with longer DNA-repair times. Our results show that cells repair replication-induced damage in G2H, and enter mitosis after a 2–3 h delay in G2L.  相似文献   

12.
The effect of G2-treatments with 2-deoxyadenosine (dAdo) on the frequency of chromatid aberrations in X-irradiated and unirradiated human lymphocytes depends on the method of culture. In whole-blood cultures dAdo alone produced very few if any aberrations, but in the presence of inhibitors of adenosine deaminase (ADA), such as EHNA or coformycin, a high frequency of chromatid gaps, chromatid breaks, and isochromatid breaks were produced. In cultures of purified lymphocytes, dAdo produced aberrations even in the absence of an ADA inhibitor. Apparently the lymphocytes are protected against the chromosome-damaging effect of dAdo by the ADA activity of the erythrocytes. — When given as a post-treatment, dAdo also enhances the frequency of chromatid aberrations induced by X-rays in G2. In whole-blood cultures this effect is obtained even in the absence of an ADA inhibitor, although the concentration required to produce enhancement is about twenty times higher than in the presence of the inhibitor.  相似文献   

13.
The metabolic inhibitor of DNA synthesis cytosine arabinoside (ara-C) is known to induce chromosome aberrations in human lymphocytes. It has been recently argued, however, that there is no unequivocal evidence that ara-C can damage chromosomes directly. Therefore, the effect of ara-C on unstimulated human lymphocytes was examined directly by means of the premature chromosome condensation technique. In about 50% of the cells, ara-C effectively induced chromosome fragments, which did not show rejoining even after the chemical was washed out. These results suggest that a possible selection against damaged cells in their progress to mitosis could result in the low yields of ara-C-induced chromosome aberrations reported in the literature. The effect of ara-C on the repair of radiation-induced chromosome aberrations was also examined. Ara-C did not affect the rejoining of the chromosome fragments induced in unstimulated human lymphocytes by 6 Gy of X-rays.  相似文献   

14.
Earlier work of several laboratories established that the yields of radiation-induced ring and dicentric chromosomes are greater when human peripheral blood lymphocytes are irradiated in GH1 some hours after phytohemagglutinin stimulation than if they are irradiated in G0 before stimulation. Post-treatment of lymphocytes irradiated in G0 with the DNA polymerase inhibitor aphidicolin, which is effective against both pol α and pol δ, produces a similar increase in ring and dicentric yield. We found that aphidicolin post-treatment was much less effective in increasing ring and dicentric yield increases in cells irradiated in G1 four to five hours after stimulation. Because we had earlier found specific inhibitors of DNA pol α ineffective in producing increased yields in either G0 or G1 lymphocytes, we conclude that much of the G0 to G1 increase in yields is mediated by pol δ.  相似文献   

15.
Chinese hamster ovary cells (CHO) were X-irradiated in G1 and G2 stages of the cell cycle and subsequently Neurospora endonuclease (NE) (E.C.3.1.4), an enzyme which is specific in cleaving single-stranded DNA, was introduced into the cells, after making the cells permeable by treatment with inactivated Sendai virus. With this treatment all classes of X-ray-induced chromatid aberrations increased in G2 cells, whereas in G1 cells an increase in cromosome type of aberrations was found, associated with a profound induction of chromatid type of aberrations as well. Duration of the availability of single-strand gaps for the action of NE has been studied in G2 cells following X-irradiation and the influence of different parts of the G2 stage on the type and frequencies of chromatid aberrations was discerned. While the increase in chromosome type of aberrations by NE in X-irradiated G1 cells has been interpreted as due to the conversion of DNA single-strand breaks or gaps to double-strand breaks by NE, the induction of chromatid aberrations in G1 has been assumed to be due to conversion of some of the damaged bases strand breaks by NE. Biochemical evidence is presented for the conversion by NE of DNA single-strand breaks induced by X-rays into double-strand breaks using neutral sucrose gradient centrifugation.  相似文献   

16.
Cell cycle plays a crucial role in regulating the pathway used to repair DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, homologous recombination is primarily limited to non-G1 cells as the formation of recombinogenic single-stranded DNA requires CDK1-dependent 5′ to 3′ resection of DNA ends. However, the effect of cell cycle on non-homologous end joining (NHEJ) is not yet clearly defined. Using an assay to quantitatively measure the contributions of each repair pathway to repair product formation and cellular survival after DSB induction, we found that NHEJ is most efficient at G1, and markedly repressed at G2. Repression of NHEJ at G2 is achieved by efficient end resection and by the reduced association of core NHEJ proteins with DNA breaks, both of which depend on the CDK1 activity. Importantly, repression of 5′ end resection by CDK1 inhibition at G2 alone did not fully restore either physical association of Ku/Dnl4-Lif1 with DSBs or NHEJ proficiency to the level at G1. Expression of excess Ku can partially offset the inhibition of end joining at G2. The results suggest that regulation of Ku/Dnl4-Lif1 affinity for DNA ends may contribute to the cell cycle-dependent modulation of NHEJ efficiency.  相似文献   

17.
The aim of this work was to investigate the relationship between mechanisms of DNA repair and apoptosis induced by oxidative stress (H2O2) in human lymphocytes. Using the comet assay, fluorescent microscopy, and DNA electrophoresis, we studied the DNA damage induced by hydrogen peroxide (H2O2) treatment, the time and the amount of repair of strand breaks, the type of cell death, and the influence of inhibitors of repair (nicotinamide). When lymphocytes were treated with H2O2, we observed an increased in necrosis compared to apoptosis. However, when nicotinamide (which inhibits DNA repair) was added, the mode of death reversed to increased apoptosis. These results indicate that nicotinamide "protects" resting lymphocytes exposed to H2O2 from necrosis but not from apoptosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The object of this study was to determine the kinetics of chromosome decondensation during the G1 period of the HeLa cell cycle. HeLa cells synchronized in the G1 period following the reversal of mitotic block were fused with Colcemid-arrested mitotic HeLa cells at 1.5, 3, 5, and 7 h after the reversal of N2O block. The resulting prematurely condensed chromosomes (PCC) were classified into six categories depending on the degree of their condensation. The frequency of occurrence of each category was plotted as a function of time after mitosis. The results of this study indicate that the process of chromosome decondensation, initiated during the telophase of mitosis continues throughout the G1 period without any interruption, thus the chromatin reaches an ultimate state of decondensation by the end of G1 period, when DNA synthesis is initiated.  相似文献   

19.
The cytotoxic and mutagenic effect of (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti BPDE) in normally excision diploid human cells treated just prior to onset of S was compared with that of cells allowed ~ 16 h for excision repair before onset of S and with that observed in excision-deficient serodema pigmentosum (SP12BE) cells. The cells were synchronized by release from density inhibition of cell replication. DNA synthesis began ~ 22 h after the cells were plated at lower density (i.e., 1.4 × 104 cells/cm2). The frequency of thioguanine-resistant mutants induced in normal cells treated just prior to onset of S was ~ 12- to 16-fold higher than that observed in cells treated in early G1 or treated in G0 (confluence) and then plated at lower density. The frequency approximated that expected for XP12BE cells from extrapolation of data obtained at lower doses. The frequency of mutants measured in normal cells treated in exponential growth was also much higher than that in the cells treated in early G1 or in G0, No such difference could be seen in XP12BE cells treated in exponential growth or in G0. In contrast to the mutagenicity data in the normal cells, there was no significant difference in the slope of the survival curve of normal cells treated at various times prior to S phase at low densities. However, normal cells treated even at the onset of S exhibited survival equal to XP12BE cells give a 4- to 5-fold lower dose. The data support the hypothesis that DNA synthesis is the cellular event which converts unexcised DNA lesions into mutations. However, they indicate that S is not the event primarily responsible for translating DNA damage into cell death. Accompanying studies on the rate of excision of anti BPDE adducts from the normal cells during the period priot to S support the conclusions.  相似文献   

20.
Replication and G2 checkpoints: their response to caffeine   总被引:2,自引:0,他引:2  
Pelayo HR  Lastres P  De la Torre C 《Planta》2001,212(3):444-453
Under long hydroxyurea treatments, evidence was obtained for the sequential activation of four checkpoints located between the onset of S phase and mitosis in Allium cepa L. root meristems. Bi-parametric flow cytometry (Br-DNA/total DNA) showed that cells initially accumulated at early S phase but, after a delay, they resumed replication and paused again at mid S phase. Cells not only overrode this second replication block but also any G2 checkpoint they encountered. Thus, a late mitotic wave was produced in the presence of hydroxyurea. The wave was formed by cells that had apparently completed their replication (normal mitoses), while others displayed anaphases/telophases with less than the expected DNA content and with chromosomal breaks (aberrant mitoses). The presence of aberrant mitoses is direct evidence for the undue override of the two G2 checkpoints responsible for surveillance of completion of DNA synthesis and repair, respectively. Caffeine selectively abrogated the G2 block produced by the checkpoint that controls post-replication DNA repair, as it advanced the entry of cells into an aberrant mitosis. However, caffeine proved not to be the universal checkpoint-evading agent as postulated. Caffeine did not modify the spontaneous override of the replication checkpoints. Moreover, it seems to enforce the checkpoint that controls the completion of DNA synthesis, as the appearance of the late wave of normal mitoses produced in the presence of hydroxyurea was prevented by the use of caffeine. Received: 21 February 2000 / Accepted: 31 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号