首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gingipains are extracellular proteases important for the virulence of Porphyromonas gingivalis; however, the mechanism for the secretion of gingipains is poorly understood. In this report, we found that insertion mutants for PG0809 (83K1 and 83K2) were defective in black pigmentation and hemolysis. We cloned and sequenced PG0809 and found that PG0809 contains two additional nucleotides that are not deposited in the W83 genome database. The revised sequence reveals an in-frame fusion of PG0810 and PG0809 and is designated the sov gene. We constructed a sov deletion mutant (83K3) and showed that 83K3 was defective in the activities of black pigmentation, hemolysis, and hemagglutination. Furthermore, in 83K3, the activities of gingipains were severely reduced whereas those of other secreted proteases DPPIV, DPP-7, and PtpA were not affected. Immunoblot analysis using anti-RgpB antiserum showed that Arg-gingipains were poorly secreted in an outer membrane or into an extracellular portion but accumulated within the cells of 83K3, suggesting the secretion of gingipains is defected in 83K3. Taken together, our findings indicated that Sov is a novel protein required for the secretion of gingipains and suggested that the secretion system for gingipains is different from the conserved secretion systems.  相似文献   

2.
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.  相似文献   

3.
The dual membrane envelopes of Gram-negative bacteria provide two barriers of unlike nature that regulate the transport of molecules into and out of organisms. Organisms have developed several systems for transport across the inner and outer membranes. The Gram-negative periodontopathogenic bacterium Porphyromonas gingivalis produces proteinase and adhesin complexes, gingipains/adhesins, on the cell surface and in the extracellular milieu as one of the major virulence factors. Gingipains and/or adhesins are encoded by kgp, rgpA, rgpB, and hagA on the chromosome. In this study, we isolated a P. gingivalis mutant (porT), which showed very weak activities of gingipains in the cell lysates and culture supernatants. Subcellular fractionation and immunoblot analysis demonstrated that precursor forms of gingipains and adhesins were accumulated in the periplasmic space of the porT mutant cells. Peptide mass fingerprinting and N-terminal amino acid sequencing of the precursor proteins and the kgp'-'rgpB chimera gene product in the porT mutant indicated that these proteins lacked the signal peptide regions, consistent with their accumulation in the periplasm. The PorT protein seemed to be membrane-associated and exposed to the periplasmic space, as revealed by subcellular fractionation and immunoblot analysis using anti-PorT antiserum. These results suggest that the membrane-associated protein PorT is essential for transport of the kgp, rgpA, rgpB, and hagA gene products across the outer membrane from the periplasm to the cell surface, where they are processed and matured.  相似文献   

4.
Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) essential for secretion and attachment to the cell surface. Inactivation of lptO (PG0027) or porT produced mutants that lacked surface protease activity and an electron-dense surface layer. Both mutants showed co-accumulation of A-LPS and unmodified CTD proteins in the periplasm. Lipid profiling by mass spectrometry showed the presence of both tetra- and penta-acylated forms of mono-phosphorylated lipid A in the wild-type and porT mutant, while only the penta-acylated forms of mono-phosphorylated lipid A were found in the lptO mutant, indicating a specific role of LptO in the O-deacylation of mono-phosphorylated lipid A. Increased levels of non-phosphorylated lipid A and the presence of novel phospholipids in the lptO mutant were also observed that may compensate for the missing mono-phosphorylated tetra-acylated lipid A in the outer membrane (OM). Molecular modelling predicted LptO to adopt a β-barrel structure characteristic of an OM protein, supported by the enrichment of LptO in OM vesicles. The results suggest that LPS deacylation by LptO is linked to the co-ordinated secretion of A-LPS and CTD proteins by a novel secretion and attachment system to form a structured surface layer.  相似文献   

5.
The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres‐Chlorobi‐Bacteroidetes superphylum. Proteins secreted by the T9SS have an N‐terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C‐terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C‐terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components.  相似文献   

6.
We recently identified a 26-kDa hemin-repressible outer membrane protein (Omp26) expressed by the periodontal pathogen Porphyromonas gingivalis. We report the localization of Omp26, which may function as a component of a hemin transport system in P. gingivalis. Under hemin-deprived conditions, P. gingivalis expressed Omp26, which was then lost from the surface after a shift back into hemin-rich conditions. Experiments with 125I labeling of surface proteins to examine the kinetics of mobilization of Omp26 determined that it was rapidly (within less than 1 min) lost from the cell surface after transfer into a hemin-excess environment. When cells grown under conditions of hemin excess were treated with the iron chelator 2,2'-bipyridyl, Omp26 was detected on the cell surface after 60 min. One- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analyses using purified anti-Omp26 monospecific polyclonal immunoglobulin G antisera established that Omp26 was heat modifiable (39 kDa unheated) and consisted of a single protein species. Immunogold labeling of negatively stained and chemically fixed thin-section specimens indicated that Omp26 was associated with the cell surface and outer leaflet of the P. gingivalis outer membrane in hemin-deprived conditions but was buried in the deeper recesses of the outer membrane in hemin-excess conditions. Analysis of subcellular fractions of P. gingivalis grown either in hemin-excess or hemin-deprived conditions detected Omp26 only in the cell envelope fraction, not in the cytoplasmic fraction or culture supernatant. Limited proteolytic digestion of hemin-deprived P. gingivalis with trypsin and proteinase K verified the surface location of Omp26 as well as its susceptibility to proteolytic digestion. Heat shock treatment of hemin-excess-grown P. gingivalis also resulted in Omp26 translocation onto the outer membrane surface even in the presence of hemin. Furthermore, hemin repletion of heat-shocked, hemin-deprived P. gingivalis did not result in Omp26 translocation off the outer membrane surface, suggesting that thermal stress inactivates this transmembrane event. This newly described outer membrane protein appears to be associated primarily with the outer membrane, in which it is exported to the outer membrane surface for hemin binding and may be imported across the outer membrane for intracellular hemin transport.  相似文献   

7.
The diazepam-binding inhibitor (DBI) is a 10-kDa highly evolutionarily conserved multifunctional protein. In mammals, one of DBI’s functions is in the activation of steroid hormone biosynthesis via binding to a specific outer mitochondrial membrane receptor (benzodiazepine receptor, BZD) and promoting cholesterol transport to the inner membrane. In this work, a multitiered approach was utilized to study the role of this receptor-like activity in ecdysteroidogenesis by larval insect prothoracic glands (PGs). First, both DBI protein and messenger RNA (mRNA) levels were correlated with peak PG ecdysteroid production. In vitro ecdysteroid production was stimulated by the diazepam analogue FGIN 1-27 and inhibited anti-DBI antibodies. The DBI protein was found distributed throughout PG cells, including regions of dense mitochondria, supposed subcellular sites of ecdysteroid synthesis. Finally, a potential mitochondrial BZD receptor in PG cells was demonstrated by photoaffinity labeling. These results suggest an important role for the insect DBI in the stimulation of steroidogenesis by prothoracic glands and indicate that a pathway for cholesterol mobilization leading to the production of steroid hormones appears to be conserved between arthropods and mammals.  相似文献   

8.
It is shown that Serratia marcescens exports a hemolysin to the cell surface and secretes it to the extracellular space. Escherichia coli containing the cloned hemolysin genes shlA and shlB exported and secreted the S. marcescens hemolysin. A nonhemolytic secretion-incompetent precursor of the hemolysin, designated ShlA*, was synthesized in a shlB deletion mutant and accumulated in the periplasmic space of E. coli. Immunogold-labeled ultrathin sections revealed ShlA* bound to the outer face of the cytoplasmic membrane and to the inner face of the outer membrane. A number of mutants carrying 3' deletions in the shlA gene secreted truncated polypeptides, the smallest of which contained only 261 of the 1578 amino acids of the mature ShlA hemolysin, showing that the information for export to the cell surface of E. coli and secretion into the culture medium is located in the NH2-terminal segment of the hemolysin. We propose a secretion pathway in which ShlA and ShlB are exported across the cytoplasmic membrane via a signal sequence-dependent mechanism. ShlB is integrated into the outer membrane. ShlA is translocated across the outer membrane with the help of ShlB. During the latter export process or at the cell surface, ShlA acquires the hemolytically active conformation and is released to the extracellular space. The hemolysin secretion pathway appears to be different from any other secretion system hitherto reported and involves only a single specific export protein.  相似文献   

9.
Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) of ~70-80 amino acid residues that is essential for their secretion and attachment to the cell surface. The CTD itself has not been detected in mature substrates, suggesting that it may be removed by a novel signal peptidase. More than 10 proteins have been shown to be essential for the proper functioning of the secretion system, and one of these, PG0026, is a predicted cysteine proteinase that also contains a CTD, suggesting that it may be a secreted component of the secretion system and a candidate for being the CTD signal peptidase. A PG0026 deletion mutant was constructed along with a PG0026C690A targeted mutant encoding an altered catalytic Cys residue. Analysis of clarified culture fluid fractions by SDS-PAGE and mass spectrometry revealed that the CTD was released intact into the surrounding medium in the wild type strain, but not in the PG0026 mutant strains. Western blot experiments revealed that the maturation of a model substrate was stalled at the CTD-removal step specifically in the PG0026 mutants, and whole cell ELISA experiments demonstrated partial secretion of substrates to the cell surface. The CTD was also shown to be accessible at the cell surface in the PG0026 mutants, suggesting that the CTD was secreted but could not be cleaved. The data indicate that PG0026 is responsible for the cleavage of the CTD signal after substrates are secreted across the OM.  相似文献   

10.
The aim of this project was to identify the best method for the enrichment of plasma membrane (PM) proteins for proteomics experiments. Following tryptic digestion and extended liquid chromatography-tandem mass spectrometry acquisitions, data were processed using MaxQuant and Gene Ontology (GO) terms used to determine protein subcellular localization. The following techniques were examined for the total number and percentage purity of PM proteins identified: (a) whole cell lysate (total number, 84–112; percentage purity, 9–13%); (b) crude membrane preparation (104–111; 17–20%); (c) biotinylation of surface proteins with N-hydroxysulfosuccinimydyl-S,S-biotin and streptavidin pulldown (78–115; 27–31%); (d) biotinylation of surface glycoproteins with biocytin hydrazide and streptavidin pulldown (41–54; 59–85%); or (e) biotinylation of surface glycoproteins with amino-oxy-biotin (which labels the sialylated fraction of PM glycoproteins) and streptavidin pulldown (120; 65%). A two- to threefold increase in the overall number of proteins identified was achieved by using stop and go extraction tip (StageTip)-based anion exchange (SAX) fractionation. Combining technique (e) with SAX fractionation increased the number of proteins identified to 281 (54%). Analysis of GO terms describing these proteins identified a large subset of proteins integral to the membrane with no subcellular assignment. These are likely to be of PM location and bring the total PM protein identifications to 364 (68%). This study suggests that selective biotinylation of the cell surface using amino-oxy-biotin in combination with SAX fractionation is a useful method for identification of sialylated PM proteins.  相似文献   

11.
Filamentous haemagglutinin (FHA) is the major adhesin of Bordetella pertussis, the whooping cough agent. FHA is synthesized as a 367-kDa precursor harbouring a remarkably long signal peptide with an N-terminal extension that is conserved among related virulence proteins. FHA is secreted via the two-partner secretion pathway that involves transport across the outer membrane by a cognate transporter protein. Here we have analyzed the mechanism by which FHA is targeted to, and translocated across, the inner membrane. Studies were performed both in vitro using Escherichia coli inside-out inner membrane vesicles and in vivo by pulse-chase labelling of Bordetella pertussis cells. The data collectively indicate that like classical periplasmic and outer membrane proteins, FHA requires SecA and SecB for its export through the SecYEG translocon in the inner membrane. Although short nascent chains of FHA were found to cross-link to signal recognition particle (SRP), we did not obtain indication for an SRP-dependent, co-translational membrane targeting provoked by the FHA signal sequence. Our results rule out that the extended signal peptide of FHA determines a specific mode of membrane targeting but rather suggest that it might influence the export rate at the inner membrane.  相似文献   

12.
Protein secretion by many Gram-negative bacteria occurs via the type II pathway involving translocation across the cytoplasmic and outer membranes in separate steps. The mechanism by which metabolic energy is supplied to the translocation across the outer membrane is unknown. Here we show that two Aeromonas hydrophila inner membrane proteins, ExeA and ExeB, are required for this process. ExeB bears sequence as well as topological similarity to TonB, a protein which opens gated ports for the inward translocation of ligands across the outer membrane. ExeA is a novel membrane protein which contains a consensus ATP-binding site. Mutations in this site dramatically decreased the rate of secretion of the toxin aerolysin from the cell. ExeB was stable when overproduced in the presence of ExeA, but was degraded when synthesized in its absence, indicating that the two proteins form a complex. These results suggest that ExeA and ExeB may act together to transduce metabolic energy to the opening of a secretion port in the outer membrane.  相似文献   

13.
Jones AM  Herman EM 《Plant physiology》1993,101(2):595-606
The auxin-binding protein ABP1 has been postulated to mediate auxin-induced cellular changes associated with cell expansion. This protein contains the endoplasmic reticulum (ER) retention signal, the tetrapeptide lysine-aspartic acid-glutamic acid-leucine (KDEL), at its carboxy terminus, consistent with previous subcellular fractionation data that indicated an ER location for ABP1. We used electron microscopic immunocytochemistry to identify the subcellular localization of ABP1. Using maize (Zea mays) coleoptile tissue and a black Mexican sweet (BMS) maize cell line, we found that ABP1 is located in the ER as expected, but is also on or closely associated with the plasma membrane and within the cell wall. Labeling of the Golgi apparatus suggests that the transport of ABP1 to the cell wall occurs via the secretory system. Inhibition of secretion of an ABP homolog into the medium of BMS cell cultures by brefeldin A, a drug that specifically blocks secretion, is consistent with this secretion pathway. The secreted protein was recognized by an anti-KDEL peptide antibody, strongly supporting the interpretation that movement of this protein out of the ER does not involve loss of the carboxy-terminal signal. Cells starved for 2,4-dichlorophenoxyacetic acid for 72 h retained less ABP in the cell and secreted more of it into the medium. The significance of our observations is 2-fold. We have identified a KDEL-containing protein that specifically escapes the ER retention system, and we provide an explanation for the apparent discrepancy that most of the ABP is located in the ER, whereas ABP and auxin act at the plasma membrane.  相似文献   

14.
Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER–mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES‐related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.  相似文献   

15.
The Arg-gingipains (RgpsA and B) of Porphyromonas gingivalis are a family of extracellular cysteine proteases and are important virulence determinants of this periodontal bacterium. A monoclonal antibody, MAb1B5, which recognizes an epitope on glycosylated monomeric RgpAs also cross-reacts with a cell-surface polysaccharide of P. gingivalis W50 suggesting that the maturation pathway of the Arg-gingipains may be linked to the biosynthesis of a surface carbohydrate. We report the purification and structural characterization of the cross-reacting anionic polysaccharide (APS), which is distinct from both the lipopolysaccharide and serotype capsule polysaccharide of P. gingivalis W50. The structure of APS was determined by 1D and 2D NMR spectroscopy and methylation analysis, which showed it to be a phosphorylated branched mannan. The backbone is built up of alpha-1,6-linked mannose residues and the side-chains contain alpha-1,2-linked mannose oligosaccharides of different lengths (one to two sugar residues) attached to the backbone via 1,2-linkage. One of the side-chains in the repeating unit contains Manalpha1-2Manalpha1-phosphate linked via phosphorus to a backbone mannose at position 2. De-O-phosphorylation of APS abolished cross-reactivity suggesting that Manalpha1-2Manalpha1-phosphate fragment forms part of the epitope recognized by MAb1B5. This phosphorylated branched mannan represents a novel polysaccharide that is immunologically related to the post-translational additions of Arg-gingipains.  相似文献   

16.
The two membranes of Gram-negative bacteria contain protein machines that have a general function in their assembly. To interact with the extra-cellular milieu, Gram-negatives target proteins to their cell surface and beyond. Many specialized secretion systems have evolved with dedicated translocation machines that either span the entire cell envelope or localize to the outer membrane. The latter act in concert with inner-membrane transport systems (i.e. Sec or Tat). Secretion via the Type V secretion system follows a two-step mechanism that appears relatively simple. Proteins secreted via this pathway are important for the Gram-negative life-style, either as virulence factors for pathogens or by contributing to the survival of non-invasive environmental species. Furthermore, this system appears well suited for the secretion of biotechnologically relevant proteins. In this review we focus on the biogenesis and application of two Type V subtypes, the autotransporters and two-partner secretion (TPS) systems. For translocation across the outer membrane the autotransporters require the assistance of the Bam complex that also plays a generic role in the assembly of outer membrane proteins. The TPS systems do use a dedicated translocator, but this protein shows resemblance to BamA, the major component of the Bam complex. Interestingly, both the mechanistic and more applied studies on these systems have provided a better understanding of the secretion mechanism and the biogenesis of outer membrane proteins. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

17.
Protein secretion through autotransporter and two-partner pathways   总被引:1,自引:0,他引:1  
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.  相似文献   

18.
Porphyromonas gingivalis is a gram-negative, anaerobic coccobacillus that has been implicated as a major etiological agent in the development of chronic periodontitis. In this paper, we report the characterization of a protein, IhtB (iron heme transport; formerly designated Pga30), that is an outer membrane hemin-binding protein potentially involved in iron assimilation by P. gingivalis. IhtB was localized to the cell surface of P. gingivalis by Western blot analysis of a Sarkosyl-insoluble outer membrane preparation and by immunocytochemical staining of whole cells using IhtB peptide-specific antisera. The protein, released from the cell surface, was shown to bind to hemin using hemin-agarose. The growth of heme-limited, but not heme-replete, P. gingivalis cells was inhibited by preincubation with IhtB peptide-specific antisera. The ihtB gene was located between an open reading frame encoding a putative TonB-linked outer membrane receptor and three open reading frames that have sequence similarity to ATP binding cassette transport system operons in other bacteria. Analysis of the deduced amino acid sequence of IhtB showed significant similarity to the Salmonella typhimurium protein CbiK, a cobalt chelatase that is structurally related to the ATP-independent family of ferrochelatases. Molecular modeling indicated that the IhtB amino acid sequence could be threaded onto the CbiK fold with the IhtB structural model containing the active-site residues critical for chelatase activity. These results suggest that IhtB is a peripheral outer membrane chelatase that may remove iron from heme prior to uptake by P. gingivalis.  相似文献   

19.
Heat-labile enterotoxin (LT) is an important virulence factor expressed by enterotoxigenic Escherichia coli. The route of LT secretion through the outer membrane and the cellular and extracellular localization of secreted LT were examined. Using a fluorescently labeled receptor, LT was found to be specifically secreted onto the surface of wild type enterotoxigenic Escherichia coli. The main terminal branch of the general secretory pathway (GSP) was necessary and sufficient to localize LT to the bacterial surface in a K-12 strain. LT is a heteromeric toxin, and we determined that its cell surface localization was mediated by the its B subunit independent of an intact G(M1) ganglioside binding site and that LT binds lipopolysaccharide and G(M1) concurrently. The majority of LT secreted into the culture supernatant by the GSP in E. coli associated with vesicles. Only a mutation in hns, not overexpression of the GSP or LT, caused an increase in vesicle yield, supporting a specific vesicle formation machinery regulated by the nucleoid-associated protein HNS. We propose a model in which LT is secreted by the GSP across the outer membrane, secreted LT binds lipopolysaccharide via a G(M1)-independent binding region on its B subunit, and LT on the surface of released outer membrane vesicles interacts with host cell receptors, leading to intoxication. These data explain a novel mechanism of vesicle-mediated receptor-dependent delivery of a bacterial toxin into a host cell.  相似文献   

20.
Porphyromonas gingivalis produces outer membrane-attached proteins that include the virulence-associated proteinases RgpA and RgpB (Arg-gingipains) and Kgp (Lys-gingipain). We analyzed the P. gingivalis outer membrane proteome and identified numerous proteins with C-terminal domains similar in sequence to those of RgpB, RgpA, and Kgp, indicating that these domains may have a common function. Using RgpB as a model to investigate the role of the C-terminal domain, we expressed RgpB as a full-length zymogen (recombinant RgpB [rRgpB]), with a catalytic Cys244Ala mutation [rRgpB(C244A)], or with the C-terminal 72 amino acids deleted (rRgpB435) in an Arg-gingipain P. gingivalis mutant (YH522AB) and an Arg- and Lys-gingipain mutant (YH522KAB). rRgpB was catalytically active and located predominantly attached to the outer membrane of both background strains. rRgpB(C244A) was inactive and outer membrane attached, with a typical attachment profile for both background strains according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but in YH522KAB, the prodomain was not removed. Thus, in vivo, RgpB export and membrane attachment are independent of the proteolytic activity of RgpA, RgpB, or Kgp. However, for maturation involving proteolytic processing of RgpB, the proteolytic activity of RgpB, RgpA, or Kgp is required. The C-terminally-truncated rRgpB435 was not attached to the outer membrane and was located as largely inactive, discrete 71-kDa and 48-kDa isoforms in the culture supernatant and the periplasm. These results suggest that the C-terminal domain is essential for outer membrane attachment and may be involved in a coordinated process of export and attachment to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号