首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
L A Nikitina  T A Detlaf 《Ontogenez》1986,17(3):243-247
The karyoplasm (the contents of germinal vesicle) of the Bufo viridis, Xenopus laevis, and Acipenser stellatus oocytes maturing under the influence of progesterone acquires the ability to induce the maturation (germinal vesicle breakdown) of the full grown oocytes, when injected into them. This ability arises in the karyoplasm earlier than in the cytoplasm and is preserved until the germinal vesicle breakdown.  相似文献   

2.
Meiotic maturation of large, 1.2-1.4 mm in diameter, stage VI oocytes of Xenopus laevis can be induced to mature in vitro by exposure to progesterone or by microinjection of maturation-promoting factor (MPF). Small, 0.95 mm in diameter, stage IV oocytes do not respond to progesterone but do undergo germinal vesicle breakdown (GVBD) in response to microinjection of MPF. The possibility that small oocytes are nonresponsive to progesterone due to a specific defect in an event known to occur with large oocytes is investigated. Both large and small oocytes possess a plasma membrane steroid receptor (Mr = 110,000) as measured by photoaffinity labeling with [3H]R5020, but the density of receptors in small oocytes is only 20% of that in large oocytes. Adenylate cyclase activity stimulated by guanyl-5'-yl-imidodiphosphate is equally inhibited by steroid (50%) in plasma membranes from both large and small oocytes with an apparent IC50 of 2 X 10(-7) M progesterone. Microinjection of the heat-stable inhibitor protein of cAMP-dependent protein kinase induces GVBD in large but not in small oocytes. These results indicate that the nonresponsiveness of small, stage IV oocytes to progesterone is due to a deficiency in an event(s) subsequent to cAMP fluctuations but prior to MPF action.  相似文献   

3.
L-leucine uptake into full-grown oocytes of Xenopus laevis is a saturable process which is Na+ dependent and presumably coupled to Na+ gradient. Our results indicate that progesterone (10(-6) M) Blocks abruptly, around the germinal vesicle breakdown, the saturable transport of L-leucine. p-Chloromercuribenzoate (10(-4) M) induces maturation and after a short lag of time strongly inhibits L-leucine uptake. Cycloheximide prevents progesterone-induced maturation and permeability changes.  相似文献   

4.
Experiments involving injections of cytoplasm from the cleaving embryos of Rana temporaria and Acipenser stellatus into fully grown oocytes of the same species and of Xenopus laevis, show that at all mitotic phases, and throughout the period of synchronous cleavage divisions, the cytoplasm is characterized by high activity of the germinal vesicle breakdown factor. This activity decreases during nuclear division desynchronization and drops sharply after the mitotic index fall upon blastulation. Aside from germinal vesicle breakdown in the oocytes, the A. stellatus embryos' cytoplasm also induces development of a cortical reaction capacity.  相似文献   

5.
Fully grown meiotically immature (germinal vesicle stage) amphibian oocytes incorporate radioactive protein ([3H]vitellogenin) following in vitro culture. In vitro exposure of such oocytes to exogenous progesterone induces germinal vesicle breakdown and inhibits incorporation of vitellogenin. In the present studies, we have investigated the effects of cytoplasm taken from mature and immature oocytes on incorporation of vitellogenin and nuclear breakdown following microinjection of this material into immature oocytes. Vitellogenin incorporation was markedly suppressed in oocytes which underwent nuclear breakdown following injection with cytoplasm from mature oocytes. Incorporation of vitellogenin into oocytes which did not mature after injection with cytoplasm taken from mature oocytes resembled that seen in oocytes injected with immature cytoplasm. The degree of suppression of vitellogenin incorporation following cytoplasmic injections was similar to that seen in uninjected oocytes treated with progesterone. Oocytes injected with cytoplasm obtained from immature oocytes did not undergo either nuclear breakdown or changes in vitellogenin incorporation. The results suggest that cytoplasm obtained from mature oocytes contains a factor(s) which alters directly or indirectly the capacity of the oocyte cell membrane to incorporate vitellogenin. Enucleated immature oocytes also incorporated [3H]vitellogenin, and injection of such oocytes with mature, but not immature, oocyte cytoplasm suppressed vitellogenin incorporation. Suppressive effects of injected cytoplasm thus appear to be mediated through physiological changes in the recipient oocyte cytoplasm rather than the nuclear component.  相似文献   

6.
Cytoplasmic extracts of meiotically mature mouse oocytes were injected into immature Xenopus laevis oocytes, which underwent germinal vesicle breakdown within 2 h. Germinal vesicle breakdown was not inhibited by incubation of the Xenopus oocytes in cycloheximide (20 micrograms/ml). Identically prepared extracts of meiotically immature mouse oocytes, arrested at the germinal vesicle stage by dibutyryl cyclic AMP (100 micrograms/ml), did not induce germinal vesicle breakdown in Xenopus oocytes. The results show that maturation-promoting factor activity appears during the course of oocyte maturation in the mouse.  相似文献   

7.
Meiotic maturation of Xenopus laevis oocytes by progesterone requires translation of stored maternal mRNAs. We investigated the role of poly(A) tail elongation of mRNAs during this process using cordycepin, which inhibits poly(A) tail elongation of mRNAs. When oocytes were treated with the buffer containing 10 mM cordycepin for 12 h, concentration of 3'-dATP in cytosol of oocytes increased to 0.7 mM, while that of ATP remained constant at around 1.2 mM. Incorporation of [32P]AMP into poly(A) mRNA was inhibited almost completely by this treatment. Progesterone-induced germinal vesicle breakdown (GVBD) was also abolished. Dose dependence of inhibition of progesterone-induced GVBD on cordycepin was similar to that of [32P]AMP incorporation into poly(A) mRNA. However, maturation-promoting factor-induced GVBD was unaffected by treatment of oocytes with cordycepin. Furthermore, the inhibition of GVBD by cordycepin was rescued by removal of cordycepin even in the presence of actinomycin D. Therefore, we concluded that poly(A) tail elongation of mRNA is required for induction of meiotic maturation of X. laevis oocytes. In addition, progesterone induced a 2.7-fold activation of [32P]AMP incorporation into the poly(A) tail of mRNA after a lag period of 3 h whereas GVBD was induced after 6-8 h from the progesterone treatment. Syntheses of most of the proteins were unaffected by treatment of oocytes with progesterone or cordycepin. However, syntheses of several proteins were increased or decreased by progesterone and cordycepin treatment.  相似文献   

8.
The following results were obtained: 1) The oxygen comsumption of progesterone-stimulated X. laevis oocytes increases at the time of germinal vesicle (GV) breakdown. 2) Continous treatment with 1 mM KCN, 1 mM and 0.1 mM DNP completely inhibits GV breakdown. 3) Pretreatment experiments with KCN, DNP and cycloheximide show that binding of progesterone to the plasma membrane and the specific hormone receptor requires neither energy, nor protein synthesis. 4) 1 h pulses of DNP (1mM) or cycloheximide (50 mug/ml) were applied, at various time intervals after progesterone treatment: early pulses strongly delay, but do not prevent GV breakdown; late pulses just before GV breakdown induce a number of cytological abnormalities, which ultimately lead to cytolysis. The significance of these results is discussed and the hypothesis that synthesis of the maturation producing factor (MPF) requires both energy and protein synthesis is proposed.  相似文献   

9.
A synthetic peptide Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala, the structure of which is based on that of a phosphorylated sequence in ribosomal protein S6, was employed as a probe for stimulated kinase activity in Xenopus laevis oocytes induced to mature with insulin or progesterone. Insulin elicited an early (20-30 min) 3-fold stimulation of S6 peptide phosphorylating activity that was not evident with progesterone. However, both hormones produced a delayed 7-12-fold stimulation of S6 peptide phosphorylating activity at the time of germinal vesicle breakdown. The results of DEAE-Sephacel, Sephacryl S-200, TSK-400, and heparin-Sepharose chromatographic fractionation experiments imply that a common S6 peptide kinase is activated as a consequence of short and long term insulin exposure, as well as in long term progesterone treatment of oocytes. Omission of potassium from the oocyte culture medium greatly facilitated insulin-induced meiotic maturation.  相似文献   

10.
R 5020 (17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione) is a synthetic analogue of progesterone, which is the physiological hormone that reinitiates germinal vesicle breakdown in Xenopus laevis oocytes. U.v.-driven photoaffinity labelling experiments were conducted with [3H]R 5020 in oocyte subcellular fractions, and covalently bound radioactivity was analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. In P-10000 (the pellet sedimenting between 1000 and 10000 g and which contains plasma membrane), a major radioactive band migrating as a 30kDa peptide was found. Non-radioactive progesterone competed with the [3H]R 5020 labelling of this fraction, but not with the labelling of minor [3H]R 5020-binding fractions. It displayed the required characteristics of a specific progesterone-binding membrane 'receptor', postulated from previous studies with intact oocytes and with cell-free P-10000 preparations of membrane-bound adenylate cyclase. The apparent Ki of approx. 4 microM for progesterone was compatible with the active concentration of the hormone. Binding specificity, as determined in competition studies, was highly correlated with the germinal vesicle breakdown activity of the steroids and analogues tested. The receptor was not found in the vitelline envelope, in vitelline platelets, in melanosome-enriched or microsomal fractions, in cytosol, nor in germinal vesicles of oocytes. The properties of this membrane steroid receptor are different from those of the already known soluble intracellular steroid receptors, in particular regarding ligand binding specificity and subcellular distribution.  相似文献   

11.
Full-grown stage VI Xenopus laevis oocytes (1,200 to 1,300 micron) respond to progesterone stimulation by undergoing a series of physiological and morphological changes that are referred to as meiotic maturation. Oocytes in earlier stages of oogenesis (I through V) do not undergo these changes and remain in prophase arrest when exposed to this steroid. We have found that oocytes ranging from 850 micron (stage IV) to 1,000 micron (stage V) are capable of responding to progesterone under the appropriate conditions. Oocytes greater than or equal to 850 micron in diameter underwent germinal vesicle breakdown (GVBD) after 10-12 hr of exposure to progesterone when ouabain was added to the medium at a concentration greater than 2.5 X 10(-6) M. Under this culture condition, progesterone was now able to induce a 0.3- to 0.4-unit increase in the intracellular pH of stage IV-V oocytes, a 4- to 5-fold increase in 40s ribosomal protein S-6 phosphorylation, and a 2.3-fold increase in their rate of protein synthesis. All of these physiological changes are characteristic of full-grown stage VI oocytes undergoing meiotic maturation. In addition, we have found that oocytes greater than or equal to 750 micron are capable of amplifying maturation promoting factor (MPF) in their cytoplasm leading to GVBD. Therefore, stage IV-V Xenopus oocytes have the potential for undergoing meiotic maturation, but they are blocked at a point in prophase that appears to be alleviated by the combination of progesterone and ouabain.  相似文献   

12.
Cycloheximide induced a complex series of alterations in the cortical cytoplasm of amphibian (Rana pipiens) oocytes undergoing steroid induced nuclear and cytoplasmic maturation in vitro. The morphological changes were described and the role of nuclear-cytoplasmic interactions in the induction of these changes was investigated in intact, enucleated and enucleated-reinjected oocytes. Three stages of cortical changes were ascertained on the basis of: localized alterations at the animal pole, redistribution of pigment and localized contractility (furrow formation) primarily along the animal:vegetal pole axis. The extent and type of cortical alterations varied depending upon the time at which oocytes were examined following hormonal stimulation and cycloheximide treatment. Cycloheximide did not produce cortical alterations in non-hormone treated oocytes nor in steroid treated oocytes until after germinal vesicle breakdown. Nuclear and cytoplasmic maturation and the appearance of cortical alterations were all inhibited when cycloheximide was added to oocytes at the time of steroid treatment. Cycloheximide induction of cortical alterations occurred only after the inhibitor was no longer effective in preventing germinal vesicle breakdown. Enucleated oocytes underwent cytoplasmic maturation in response to the steroid but exhibited no cortical alterations following the delayed addition of cycloheximide. Simultaneous administration of cycloheximide and steroid to enucleated oocytes inhibited cytoplasmic maturation and all observable cortical alterations. Reinjection of nuclear material into enucleated oocytes restored the ability of cycloheximide to induce cortical alterations following steroid induction of cytoplasmic maturation. Without steroid treatment, such reinjected oocytes did not exhibit cortical changes in response to cycloheximide. The data demonstrate that the nucleus is required for and contains a factor(s) which controls the cycloheximide response and post-maturation differentiation of the oocyte. The maturational changes in the cortical cytoplasm appear to be dependent on the intermixing of the germinal vesicle nucleoplasm materials with mature cytoplasm following germinal vesicle breakdown. The results further suggest that the cortical effects of cycloheximide are dependent upon the initiation of protein synthesis during this period of oocyte development. The significance of these observations and experimental studies are discussed in relation to current understanding of the molecular mechanisms controlling meiosis induction and the composition of the germinal vesicle.  相似文献   

13.
The mechanism of steroid hormone-induced reinitiation of meiosis in Xenopus laevis oocytes in vitro involves interaction of the hormone with an ooplasma membrane receptor and early changes of enzymatic activities (adenylate cyclase, p48 protein kinase). In full-grown (stage 6) oocytes, we have observed cytochemically, at the ultrastructural level, alkaline phosphatase activity in the ooplasma membrane of microvilli, its decrease by 2 hr of progesterone action, and its complete disappearance at the time of germinal vesicle breakdown (GVBD). Insulin (30 micrograms/ml) also provoked a decrease of phosphatase activity, although it did not promote GVBD under these circumstances. When oocytes were exposed simultaneously to progesterone (1 microM) and insulin (30 micrograms/ml), the enzymatic activity disappeared earlier than with any one of them, correlating with the faster occurrence of GVBD. Inhibitors of alkaline phosphatase activity and competitive substrates potentiated progesterone action on GVBD. Insulin and beta-glycerophosphate potentiating activities were additive. These results suggest that the ooplasma membrane alkaline phosphatase may be implicated in the course of reinitiation of meiosis in X. laevis oocytes.  相似文献   

14.
Equine oocytes (n = 537) were collected from slaughterhouse ovaries (n = 118 mares) by scraping the internal follicular wall. Preculture record was made of the appearance of oocyte investments (no cumulus, corona radiata only, compact cumulus, expanded cumulus), appearance of cytoplasm (homogeneous, condensed heterogeneous/fragmented), and nuclear maturation stages (germinal vesicle, germinal-vesicle breakdown, metaphase I, metaphase II, degenerated). There was no difference between follicles > 30 mm and follicles < or = 30 mm in the preculture frequency distribution among the 5 nuclear stages; 96% were at either the germinal vesicle or germinal-vesicle breakdown stages. Oocytes from follicles 5 to 30 mm were cultured in modified TCM-199 for 18, 24, 36 and 48 h. Postculture nuclear maturation classifications were immature (germinal vesicle, germinal-vesicle breakdown, and metaphase I), mature (metaphase II or secondary oocyte), and degenerated. The frequency distribution of oocytes among the 3 postculture maturation classifications changed (P < 0.05) at 18 h (15% mature oocytes), changed (P < 0.05) further at 24 h (55% mature oocytes), with no additional change for 36 or 48 h. The only preculture cytoplasm group that affected the postculture results was the heterogeneous/fragmentation group which had a high proportion of postculture degenerated oocytes (67%); however, only 4% of oocytes were in this group. Luteal status of the mare had an effect (P < 0.05) on the frequencies of the maturation classifications, but not enough to be useful in selecting oocytes. Consistency of the follicle and the type of oocyte investment did not alter significantly the maturation frequencies. The frequency of degenerated oocytes after culture was high under the following conditions: 1) diameter of the follicle from which the oocyte was selected was 5 to 10 mm (44% degenerated oocytes), 2) the largest follicle per pair of ovaries was < or = 10 mm (63%), and 3) the mare was pregnant (66%). These results were probably related to the reported high frequency of atretic follicles in the 5- to 10-mm population. In summary, oocytes from individual follicles < or = 10 mm or from follicles in which the largest follicle per mare was < or = 10 mm were the poorest candidates for in vitro maturation.  相似文献   

15.
Induction of maturation in small Xenopus laevis oocytes   总被引:1,自引:0,他引:1  
The competence of Xenopus laevis oocytes in various stages of growth to respond to progesterone treatment was investigated. Full-grown (stage 6) oocytes undergo nuclear membrane dissolution and resume meiosis in response to progesterone exposure, while smaller oocytes (stages 3-5; less than 1100 micron in diameter) do not. The defect which prevents 750- to 1050-micron oocytes from responding to progesterone can be overcome by microinjecting cytoplasm withdrawn from a stage 6 oocyte. Germinal vesicle breakdown in these small oocytes occurs on a timetable similar to that of stage 6 oocytes exposed to progesterone and is accompanied by a twofold increase in protein synthesis as well as the activation of MPF. The results argue that a cytoplasmic factor(s) which probably first appears at late stage 5 is required for progesterone responsiveness. The identity and role of the factor(s) in the development of maturation competence and the regulation of maternal mRNA translation are discussed.  相似文献   

16.
Both insulin and progesterone are capable of stimulating germinal vesicle breakdown (GVBD) of large, Stage VI oocytes of Xenopus laevis. Numerous studies have shown an increase in intracellular pH (pHi) and ribosomal protein S6 phosphorylation prior to GVBD in oocytes treated with progesterone. In this study the effect of insulin and progesterone on pHi and S6 phosphorylation was compared. Both hormones increased pHi and S6 phosphorylation to similar levels and the time course of pHi change was the same for both hormones. Half-maximal effects of insulin were observed at 7 X 10(-8) M concentrations. In the presence of 1 nM cholera toxin, the ability of progesterone to induce these two responses was inhibited while the action of insulin was unaffected. However, GVBD induced by either hormone was blocked by cholera toxin. In small, Stage IV oocytes that do not undergo GVBD in response to either progesterone or insulin, a partial increase in pHi without S6 phosphorylation occurred in response to progesterone but both events occurred in response to insulin. These results suggest that the inability of Stage IV oocytes to undergo GVBD in response to hormone is not due to a failure to increase pHi or phosphorylate S6. The results in this paper also indicate that these events are regulated differently by insulin and progesterone in Xenopus oocytes.  相似文献   

17.
The induction of meiosis reinitiation by steroid hormones (progesterone and testosterone) in Xenopus laevis oocytes was studied in vitro in presence of inhibitors of phosphatase activity such as beta-glycerophosphate, considered as a competitive inhibitor, and the two ions, Zn++ and MoO--4. Kinetics of the germinal vesicle breakdown indicating the reinitiation of meiosis, have shown that while these phosphatase inhibitors were not active by themselves under the present experimental conditions, they enhanced the process elicited by progesterone or testosterone.  相似文献   

18.
Xenopus oocytes were prelabeled with 32PO4 and induced to mature by progesterone treatment (1 microM). At the time of the breakdown of the germinal vesicle (nucleus), an alkali stable 45 kDa phosphoprotein appears in the 165 000 X g oocyte supernatant. Phospho-amino acid analysis shows that the 45 kDa protein is phosphorylated at threonine residues.  相似文献   

19.
Fully grown oocytes of Xenopus laevis undergo resumption of the meiotic cycle when treated with the steroid hormone progesterone. Previous studies have shown that meiotic maturation results in profound downregulation of specific endogenous membrane proteins in oocytes. To determine whether the maturation impacts the functional properties of exogenously expressed membrane proteins, we used cut-open recordings from Xenopus oocytes expressing several types of Na(+) and K(+) channels. Treatment of oocytes with progesterone resulted in a downregulation of heterologously expressed Na(+) and K(+) channels without a change in the kinetics of the currents. The time course of progesterone-induced ion channel inhibition was concentration dependent. Complete elimination of Na(+) currents temporally coincided with development of germinal vesicle breakdown, while elimination of K(+) currents was delayed by approximately 2 h. Coexpression of human beta(1)-subunit with rat skeletal muscle alpha-subunit in Xenopus oocytes did not prevent progesterone-induced downregulation of Na(+) channels. Addition of 8-bromo-cAMP to oocytes or injection of heparin before progesterone treatment prevented the loss of expressed currents. Pharmacological studies suggest that the inhibitory effects of progesterone on expressed Na(+) and K(+) channels occur downstream of the activation of cdc2 kinase. The loss of channels is correlated with a reduction in Na(+) channel immunofluorescence, pointing to a disappearance of the ion channel-forming proteins from the surface membrane.  相似文献   

20.
Full grown Xenopus oocytes were incubated with trifluoperazine (TFP) or injected with TFP. Incubation of oocytes in TFP resulted in normal-appearing meiotic maturation, as judged by the presence of the white spot and the absence of the germinal vesicle. Cortical granule breakdown in TFP-incubated oocytes was not normal. Abnormal cortical granule breakdown was also observed when progesterone-maturated oocytes were activated in the presence of TFP. Oocytes microinjected with TFP and incubated with progesterone appeared to mature in a normal manner, as judged by the absence of the germinal vesicle; these underwent cortical granule breakdown following activation, but frequently lacked the white spot. Oocytes microinjected with TFP did not mature in the absence of progesterone. We conclude that incubation, although not microinjection, of oocytes with TFP induces essentially normal resumption of meiotic maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号