首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In their seminal publication describing the structure of the DNA double helix , Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.  相似文献   

2.
3.
DNA released from eukaryotic cells by proteases/SDS or by alkali/SDS still contains distinct proteins which are not removed by these cell lysis procedures nor by subsequent phenol treatment. The proteins most tightly bound to DNA can only be isolated by degradation of DNA. In contrast to the protein-DNA complexes, the protein material isolated after degradation of DNA is sensitive to protease treatment. Moreover, the isolated protein material tends to form aggregates which are insoluble in buffers not containing detergents. They are only poorly soluble in buffers containing SDS. The partially solubilized material can be separated by SDS-polyacrylamide gel electrophoresis into two main bands. Antibodies were raised in rabbits against the polypeptides contained in these main bands. Immunofluorescence micrographs are presented of cells treated with the antibodies. The results indicate that the proteins characterized by their involvement in extremely stable protein-DNA complexes also occur independently of DNA in eukaryotic cells.  相似文献   

4.
5.
6.
Chromatin prepared from S phase hepatoma tissue culture (HTC) cell incorporates in vitro about 11-14 pmoles [3H]dTMP into DNA in 30 min. Single-stranded DNA added to this chromatin stimulates DNA synthesis more than 40-fold whereas activated DNA enhances it about 60-fold. By contrast, stimulation of DNA synthesis by activated DNA in a crude nuclear extract exceeds the stimulation exerted by denatured DNA by a factor of 7. Stimulation of DNA synthesis by denatured DNA is not due to stabilization of either the chromatin or the product of the endogenous reaction. On the other hand, we find that poly(dC) and poly (dT) enhance DNA synthesis by serving as templates which are copied by chromatin in a true complementary fashion. It seems therefore, that eukaryotic cell chromatin is able to copy single-stranded DNA at a high efficiency. Chromatin of G1 arrested cell copies exogenous templates at a considerably reduced rate. The enzyme responsible for the copying of denatured DNA is tentatively identified as DNA polymerase alpha on the basis of its sensitivity to sulfhydril group blocking, its requirements for ions and failure to copy the ribo strand of oligo(dT) poly(A).  相似文献   

7.
With the aid of autoradiography, the effect of insulin on entering S- from G1-period of the mitotic cycle and on the rate of DNA synthesis of the mouse fibroblasts (L), was studied,--in the cells incubated for 24 hr in serum-free medium. In these conditions the cells were temporarily blocked in G1-period. Insulin (100 mcU/ml) increased by 1.5-fold the amount of cells in S-period as well as caused a marked stimulation of DNA synthesis.  相似文献   

8.
Antibodies to DNA are characteristic of the autoimmune disease systemic lupus erythematosus (SLE) and they also serve as models for the study of protein-DNA recognition. Anti-DNA antibodies often play an important role in disease pathogenesis by mediating kidney damage via antibody-DNA immune complex formation. The structural underpinnings of anti-DNA antibody pathogenicity and antibody-DNA recognition, however, are not well understood, due in part to the lack of direct, experimental three-dimensional structural information on antibody-DNA complexes. To address these issues for anti-single-stranded DNA antibodies, we have determined the 2.1 A crystal structure of a recombinant Fab (DNA-1) in complex with dT5. DNA-1 was previously isolated from a bacteriophage Fab display library from the immunoglobulin repertoire of an SLE-prone mouse. The structure shows that DNA-1 binds oligo(dT) primarily by sandwiching thymine bases between Tyr side-chains, which allows the bases to make sequence-specific hydrogen bonds. The critical stacking Tyr residues are L32, L49, H100, and H100A, while His L91 and Asn L50 contribute hydrogen bonds. Comparison of the DNA-1 structure to other anti-nucleic acid Fab structures reveals a common ssDNA recognition module consisting of Tyr L32, a hydrogen bonding residue at position L91, and an aromatic side-chain from the tip of complementarity determining region H3. The structure also provides a framework for interpreting previously determined thermodynamics data, and this analysis suggests that hydrophobic desolvation might underlie the observed negative enthalpy of binding. Finally, Arg side-chains from complementarity determining region H3 appear to play a novel role in DNA-1. Rather than forming ion pairs with dT5, Arg contributes to oligo(dT) recognition by helping to maintain the structural integrity of the combining site. This result is significant because antibody pathogenicity is thought to be correlated to the Arg content of anti-DNA antibody hypervariable loops.  相似文献   

9.
Replicative holoenzymes exhibit rapid and processive primer extension DNA synthesis, but inefficient strand displacement DNA synthesis. We investigated the bacteriophage T4 and T7 holoenzymes primer extension activity and strand displacement activity on a DNA hairpin substrate manipulated by a magnetic trap. Holoenzyme primer extension activity is moderately hindered by the applied force. In contrast, the strand displacement activity is strongly stimulated by the applied force; DNA polymerization is favoured at high force, while a processive exonuclease activity is triggered at low force. We propose that the DNA fork upstream of the holoenzyme generates a regression pressure which inhibits the polymerization-driven forward motion of the holoenzyme. The inhibition is generated by the distortion of the template strand within the polymerization active site thereby shifting the equilibrium to a DNA-protein exonuclease conformation. We conclude that stalling of the holoenzyme induced by the fork regression pressure is the basis for the inefficient strand displacement synthesis characteristic of replicative polymerases. The resulting processive exonuclease activity may be relevant in replisome disassembly to reset a stalled replication fork to a symmetrical situation. Our findings offer interesting applications for single-molecule DNA sequencing.  相似文献   

10.
Jezewska MJ  Bujalowski W 《Biochemistry》2000,39(34):10454-10467
Quantitative analyses of the interactions of the Escherichia coli replicative helicase PriA protein with a single-stranded DNA have been performed, using the thermodynamically rigorous fluorescence titration technique. The analysis of the PriA helicase interactions with nonfluorescent, unmodified nucleic acids has been performed, using the macromolecular competition titration (MCT) method. Thermodynamic studies of the PriA helicase binding to ssDNA oligomers, as well as competition studies, show that independently of the type of nucleic acid base, as well as the salt concentration, the type of salt in solution, and nucleotide cofactors, the PriA helicase binds the ssDNA as a monomer. The enzyme binds the ssDNA with significant affinity in the absence of any nucleotide cofactors. Moreover, the presence of AMP-PNP diminishes the intrinsic affinity of the PriA protein for the ssDNA by a factor approximately 4, while ADP has no detectable effect. Analyses of the PriA interactions with different ssDNA oligomers, over a large range of nucleic acid concentrations, indicates that the enzyme has a single, strong ssDNA-binding site. The intrinsic affinities are salt-dependent. The formation of the helicase-ssDNA complexes is accompanied by a net release of 3-4 ions. The experiments have been performed with ssDNA oligomers encompassing the total site size of the helicase-ssDNA complex and with oligomers long enough to encompass only the ssDNA-binding site of the enzyme. The obtained results indicate that salt dependence of the intrinsic affinity results predominantly, if not exclusively, from the interactions of the ssDNA-binding site of the helicase with the nucleic acid. There is an anion effect on the studied interactions, which suggests that released ions originate from both the protein and the nucleic acid. Contrary to the intrinsic affinities, cooperative interactions between bound PriA molecules are accompanied by a net uptake of approximately 3 ions. The PriA protein shows preferential intrinsic affinity for pyrimidine ssDNA oligomers. In our standard conditions (pH 7.0, 10 degrees C, 100 mM NaCl), the intrinsic binding constant for the pyrimidine oligomers is approximately 1 order of magnitude higher than the intrinsic binding constant for the purine oligomers. The significance of these results for the mechanism of action of the PriA helicase is discussed.  相似文献   

11.
The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.  相似文献   

12.
Epidermal growth factor and transforming growth factor alpha stimulated DNA synthesis in primary cultures of adult rat hepatocytes. Neurotensin amplified epidermal growth factor-stimulated or transforming growth factor alpha-stimulated DNA synthesis by three- to eightfold. Neurotensin by itself did not stimulate DNA synthesis. Amplification of DNA synthesis by neurotensin was observed as low as 10?10 M, and it was increased in a dose-dependent manner with maximal effects at 10–8 M. These results were obtained when hepatocytes were cultured in Williams' medium E, but not in Leibovitz L-15 medium, suggesting that a minor component(s) in the medium is required for hepatocytes to fully respond to neurotensin. Neurotensin effect on DNA synthesis was observed not only in normal rat hepatocytes but also in partially hepatectomized rat hepatocytes, although its effect was stronger in normal hepatocytes. Amplified DNA synthesis was inhibited by transforming growth factor β. Secondary mitogens (co-mitogens) such as insulin, vasopressin, or angiotensin II interacted additively with low concentrations of epidermal growth factor as well as with neurotensin. Neurotensin-related peptides such as kinetensin or neuromedin-N, which was released from blood plasma by pepsin digestion, did not have this amplifying effect on DNA synthesis at any concentrations tested. Neurotensin mRNA was found in several organs including brain and intestine, but not liver. These results suggest that neurotensin can be regarded as a new secondary mitogen and that it may be involved in cell proliferation, including regenerating liver as a gastrointestinal hormone and/or a neurotransmitter. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The single-stranded DNA binding protein of Ustilago maydis decreases the contour length of φX174 DNA. When DNA complexes were prepared with subsaturating amounts of the protein, its distribution on the DNA was markedly non-random, indicating a high degree of co-operativity in its binding to single-stranded DNA. The analagous Escherichia coli, Salmonella typhimurium and bacteriophage T7 binding proteins also reduced DNA contour lengths to a similar extent, whereas the bacteriophage T4 gene 32 protein, as shown previously, increased the contour length. Despite the fact that the U. maydis protein efficiently denatures poly[d(A-T) · d(A-T)], it appears to initiate denaturation of native bacteriophage λ DNA rather inefficiently.  相似文献   

14.
15.
AddAB is a helicase-nuclease that processes double-stranded DNA breaks for repair by homologous recombination. This process is modulated by Chi recombination hotspots: specific DNA sequences that attenuate the nuclease activity of the translocating AddAB complex to promote downstream recombination. Using a combination of kinetic and imaging techniques, we show that AddAB translocation is not coupled to DNA unwinding in the absence of single-stranded DNA binding proteins because nascent single-stranded DNA immediately re-anneals behind the moving enzyme. However, recognition of recombination hotspot sequences during translocation activates unwinding by coupling these activities, thereby ensuring the downstream formation of single-stranded DNA that is required for RecA-mediated recombinational repair. In addition to their implications for the mechanism of double-stranded DNA break repair, these observations may affect our implementation and interpretation of helicase assays and our understanding of helicase mechanisms in general.  相似文献   

16.
17.
18.
A partially purified preparation of DNA polymerase alpha, obtained from the cytosol of Ehrlich ascites tumour cells, has been found to catalyze the conversion of MVM parvovirus, SS DNA (5 kilobases) to RF in vitro. The reaction initiates at a natural 55 base pair hairpin which exists at the 3' terminus of MVM SS DNA. The SS leads to RF conversion is sensitive to aphidicolin, resistant to ddTTP and is promoted by purine ribonucleoside 5' triphosphates, a phenomenon which could not be explained simply by stabilization effects on the in vitro deoxynucleotide precursor pool. In the absence of rNTPs, nascent complementary strands frequently terminate prematurely at a preferred location, between 1300 and 1700 nucleotides from the initiating 3' hairpin terminus. This in vitro system, involving self-primed parvovirus DNA synthesis, provides a convenient assay for those components of the mammalian replicative DNA polymerase complex which are required for the elongation of nascent DNA chains.  相似文献   

19.
Single-stranded DNA-binding proteins and their functional homologs, replication protein A, are essential components of cellular DNA replication, repair and recombination. We describe here the isolation and characterization of multiple replication protein A homologs, RPA1, RPA2, and RPA3, from the archaeon Methanosarcina acetivorans. RPA1 comprises four single-stranded DNA-binding domains, while RPA2 and RPA3 are each composed of two such domains and a zinc finger domain. Gel filtration analysis suggested that RPA1 exists as homotetramers and homodimers in solution, while RPA2 and RPA3 form only homodimers. Unlike the multiple RPA proteins found in other Archaea and eukaryotes, each of the M. acetivorans RPAs can act as a distinct single-stranded DNA-binding protein. Fluorescence resonance energy transfer and fluorescence polarization anisotropy studies revealed that the M. acetivorans RPAs bind to as few as 10 single-stranded DNA bases. However, more stable binding is achieved with single-stranded DNA of 18-23 bases, and for such substrates the estimated Kd was 3.82 +/- 0.28 nM, 173.6 +/- 105.17 nM, and 5.92 +/- 0.23 nM, for RPA1, RPA2, and RPA3, respectively. The architectures of the M. acetivorans RPAs are different from those of hitherto reported homologs. Thus, these proteins may represent novel forms of replication protein A. Most importantly, our results show that the three RPAs and their combinations highly stimulate the primer extension capacity of M. acetivorans DNA polymerase BI. Although bacterial SSB and eukaryotic RPA have been shown to stimulate DNA synthesis by their cognate DNA polymerases, our findings provide the first in vitro biochemical evidence for the conservation of this property in an archaeon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号