首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retinal pigment epithelium (RPE) plays numerous critical roles in maintaining vision and this is underscored by the prevalence of degenerative blinding diseases like age-related macular degeneration (AMD), in which visual impairment is caused by progressive loss of RPE cells. In contrast to mammals, zebrafish possess the ability to intrinsically regenerate a functional RPE layer after severe injury. The molecular underpinnings of this regenerative process remain largely unknown yet hold tremendous potential for developing treatment strategies to stimulate endogenous regeneration in the human eye. In this study, we demonstrate that the mTOR pathway is activated in RPE cells post-genetic ablation. Pharmacological and genetic inhibition of mTOR activity impaired RPE regeneration, while mTOR activation enhanced RPE recovery post-injury, demonstrating that mTOR activity is essential for RPE regeneration in zebrafish. RNA-seq of RPE isolated from mTOR-inhibited larvae identified a number of genes and pathways dependent on mTOR activity at early and late stages of regeneration; amongst these were components of the immune system, which is emerging as a key regulator of regenerative responses across various tissue and model systems. Our results identify crosstalk between macrophages/microglia and the RPE, wherein mTOR activity is required for recruitment of macrophages/microglia to the RPE injury site. Macrophages/microglia then reinforce mTOR activity in regenerating RPE cells. Interestingly, the function of macrophages/microglia in maintaining mTOR activity in the RPE appeared to be inflammation-independent. Taken together, these data identify mTOR activity as a key regulator of RPE regeneration and link the mTOR pathway to immune responses in facilitating RPE regeneration.  相似文献   

2.
目的:建立胎儿视网膜色素上皮细胞(fRPE)的原代培养方法。方法分离流产胎儿RPE,并进行体外原代培养、传代,免疫荧光检测培养RPE细胞分子标志物。以β细胞增殖诱导剂(二芳基脲衍生物WS3)刺激RPE细胞增殖,并测量其生长曲线。3组细胞比较采用单因素F检验。结果源自不同胎儿的fRPE细胞在原代及体外增殖中并未表现出明显不同。在体外扩增的4代fRPE中,100﹪的细胞表现出了良好的细胞形态。免疫荧光染色证实了体外扩增的fRPE细胞可很好的表达RPE细胞标记物。WS3未见有刺激RPE细胞体外增殖的作用。培养后不同时间三组细胞差异均有统计学意义(F=119.437~234.368,P均=0.000)。结论 fRPE细胞可在非复杂的培养环境中实现体外大量增殖,这些体外增殖的fRPE细胞可以为RPE移植细胞治疗视网膜黄斑病变提供丰富的细胞来源。  相似文献   

3.
The differential polarized distribution of the reduced- folate transporter (RFT-1) and folate receptor alpha (FRalpha), the two proteins involved in the transport of folate, has been characterized in normal mouse retinal pigment epithelium (RPE) and in cultured human RPE cells. RPE cells mediate the vectorial transfer of nutrients from choroidal blood to neural retina. Whereas FRalpha is known to be present in many cell types of the neural retina, in situ hybridization analysis in the present study demonstrated that RFT-1 is present only in RPE. Laser-scanning confocal microscopy using antibodies specific for RFT-1 demonstrated an apical distribution of this protein in cultured human and intact mouse RPE, which contrasts with the basolateral distribution of FRalpha in these cells. The expression of RFT-1 in the RPE cell apical membrane was confirmed by functional studies with purified apical membrane vesicles from bovine RPE. These studies, done with N(5)-methyltetrahydrofolate (the predominant folate derivative in blood) and folate as substrates, have shown that RFT-1 functions in a Na(+)- and C1(-)-independent manner. The transporter is specific for folate and its analogs. A transmembrane H(+) gradient influences the transport function of this protein markedly; the transport mechanism is likely to be either folate/H(+) co-transport or folate/OH(-) exchange. Based on the differential polarization of FRalpha and RFT-1 in RPE, we suggest that these two proteins work in a concerted manner to bring about the vectorial transfer of folate across the RPE cell layer from the choroidal blood to the neural retina. This constitutes the first report of the differential polarization of the two folate transport proteins in any polarized epithelium.  相似文献   

4.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.  相似文献   

5.
Age-related macular degeneration (AMD) is characterized by progressive loss of central vision, which is attributed to abnormal accumulation of macular deposits called "drusen" at the interface between the basal surface of the retinal pigment epithelium (RPE) and Bruch's membrane. In the most severe cases, drusen deposits are accompanied by the growth of new blood vessels that breach the RPE layer and invade photoreceptors. In this study, we hypothesized that RPE secreted proteins are responsible for drusen formation and choroidal neovascularization. We used stable isotope labeling by amino acids in cell culture (SILAC) in combination with LC-MS/MS analysis and ZoomQuant quantification to assess differential protein secretion by RPE cell cultures prepared from human autopsy eyes of AMD donors (diagnosed by histological examinations of the macula and genotyped for the Y402H-complement factor H variant) and age-matched healthy control donors. In general, RPE cells were found to secrete a variety of extracellular matrix proteins, complement factors, and protease inhibitors that have been reported to be major constituents of drusen (hallmark deposits in AMD). Interestingly, RPE cells from AMD donors secreted 2 to 3-fold more galectin 3 binding protein, fibronectin, clusterin, matrix metalloproteinase-2 and pigment epithelium derived factor than RPE cells from age-matched healthy donors. Conversely, secreted protein acidic and rich in cysteine (SPARC) was found to be down regulated by 2-fold in AMD RPE cells versus healthy RPE cells. Ingenuity pathway analysis grouped these differentially secreted proteins into two groups; those involved in tissue development and angiogenesis and those involved in complement regulation and protein aggregation such as clusterin. Overall, these data strongly suggest that RPE cells are involved in the biogenesis of drusen and the pathology of AMD.  相似文献   

6.
The generation of retinal pigment epithelial (RPE) cells from pluripotent stem cells is a topic of interest over the past few years as dysfunctional RPE cells are a primary cause of ocular diseases. However, a number of obstacles need to be overcome before these cells can be used in clinical trials. This review aims to provide an overview of the latest reports on the generation of RPE cells from human pluripotent stem cells. Challenges that need to be addressed in future studies for their therapeutic applications are discussed. Proposed research goals for this fast growing field are highlighted.  相似文献   

7.
This study examines the retinal transdifferentiation (TD) of retinal pigmented epithelium (RPE) fragments dissected from Xenopus laevis larvae and implanted into the vitreous chamber of non-lentectomized host eyes. In these experimental conditions, most RPE implants transformed into polarized vesicles in which the side adjacent to the lens maintained the RPE phenotype, while the side adjacent to the host retina transformed into a laminar retina with the photoreceptor layer facing the cavity of the vesicle and with the ganglionar cell layer facing the host retina. The formation of a new retina with a laminar organization is the result of depigmentation, proliferation and differentiation of progenitor cells under the influence of inductive factors from the host retina. The phases of the TD process were followed using BrdU labelling as a marker of the proliferation phase and using a monoclonal antibody (mAbHP1) as a definitive indicator of retina formation. Pigmented RPE cells do not express Pax6. In the early phase of RPE to retinal TD, all depigmented and proliferating progenitor cells expressed Pax6. Changes in the Pax6 expression pattern became apparent in the early phase of differentiation, when Pax6 expression decreased in the presumptive outer nuclear layer (ONL) of the new-forming retina. Finally, during the late differentiation phase, the ONL, which contains photoreceptors, no longer expressed Pax6, Pax6 expression being confined to the ganglion cell layer and the inner nuclear layer. These results indicate that Pax6 may have different roles during the different phases of RPE to retinal TD, acting as an early retinal determinant and later directing progenitor cell fate.  相似文献   

8.
Summary In vertebrate tissue development a given cell differentiation pathway is usually associated with a pattern of expression of a specific set of cytoskeletal proteins, including different intermediate filament (IF) and junctional proteins, which is identical in diverse species. The retinal pigment epithelium (RPE) is a layer of polar cells that have very similar morphological features and practically identical functions in different vertebrate species. However, in biochemical and immunolocalization studies of the cytoskeletal proteins of these cells we have noted remarkable interspecies differences. While chicken RPE cells contain only IFs of the vimentin type and do not possess desmosomes and desmosomal proteins RPE cells of diverse amphibian (Rana ridibunda, Xenopus laevis) and mammalian (rat, guinea pig, rabbit, cow, human) species express cytokeratins 8 and 18 either as their sole IF proteins, or together with vimentin IFs as in guinea pig and a certain subpopulation of bovine RPE cells. Plakoglobin, a plaque protein common to desmosomes and the zonula adhaerens exists in RPE cells of all species, whereas desmoplakin and desmoglein have been identified only in RPE desmosomes of frogs and cows, including bovine RPE cell cultures in which cytokeratins have disappeared and vimentin IFs are the only IFs present. These challenging findings show that neither cytokeratin IFs nor desmosomes are necessary for the establishment and function of a polar epithelial cell layer and that the same basic cellular architecture can be achieved by different programs of expression of cytoskeletal proteins. The differences in the composition of the RPE cytoskeleton further indicate that, at least in this tissue, a specific program of expression of IF and desmosomal proteins is not related to the functions of the RPE cell, which are very similar in the various species.  相似文献   

9.
Summary The morphology of the retinal pigment epithelium (RPE) and adjacent choroid has been investigated by electron microscopy in the domestic pig. The RPE consists of a single layer of cells which are columnar posteriorly but become cuboidal and even squamous moving peripherally in the fundus. The cells of the RPE layer regardless of location display basal (scleral) infoldings and apical (vitreal) processes and are joined laterally by junctional complexes. Throughout the retina the epithelial cells are rich in smooth endoplasmic reticulum and mitochondria but less so in rough endoplasmic reticulum and polysomes. The epithelial nucleus is vesicular and basally located. In the superior fundus an area of the RPE is very lightly pigmented and richer in lysosomes than is this layer in the inferior and peripheral fundus. The choroid overlying this area is also lightly pigmented and contains much collagen in a lamellar arrangement. This region may represent a vestigial tapetum fibrosum. Bruch's membrane is slightly thicker posteriorly but is everywhere seen to have a pentalaminate substructure. The choriocapillaris is a single layer of large capillaries which show numerous fenestrations facing the RPE. In the superior fundus the choriocapillaris is also highly fenestrated facing the choroid.  相似文献   

10.
A study was made of proliferative activity and transdifferentiation of the cells of retinal pigment epithelium (RPE) cultivated in the cavity of the lensectomized eye of adult newt. Implantation of the newt RPE together with vascular membrane and scleral coat resulted in the regeneration of retina. In this process the character of changes in the proliferative activity of RPE and differentiation of retinal cells were the same as in the regeneration of retina in situ. RPE implanted with the vascular membrane alone, despite a high level of proliferation during the first ten days of cultivation, no differentiated retina was formed. Possible causes of these differences are discussed, and the comparison is made of the data obtained with those on RPE cultivation in vitro. After lens removal, with RPE implants present in the eye cavity, in addition to the regenerated lens, 2-3 extra lenses and retina were formed from the cells of the inner layer of the recipient's dorsal iris. Also some cases were revealed of lens formation from the cells of ventral iris. With a complete detachment of the recipient's retina (an after-effect of transplantation) a second differentiated retina regenerated in situ from the recipient's RPE cells.  相似文献   

11.
Phagocytosis of shed photoreceptor outer segments (POSs) by retinal pigment epithelial (RPE) cells is critical to retinal homeostasis and shares many conserved signaling pathways with other phagocytes, including extrinsic regulations. Phagocytotic ligands are the key to cargo recognition, engulfment initiation, and activity regulation. In this study, we identified intracellular protein ATP-binding cassette subfamily F member 1 (ABCF1) as a novel RPE phagocytotic ligand by a new approach of functional screening. ABCF1 was independently verified to extrinsically promote phagocytosis of shed POSs by D407 RPE cells. This finding was further corroborated with primary RPE cells and RPE explants. Internalized POS vesicles were colocalized with a phagosome marker, suggesting that ABCF1-mediated engulfment is through a phagocytic pathway. ABCF1 was released from apoptotic cells and selectively bound to shed POS vesicles and apoptotic cells, possibly via externalized phosphatidylserine. ABCF1 is predominantly expressed in POSs and colocalized with the POS marker rhodopsin, providing geographical convenience for regulation of RPE phagocytosis. Collectively these results suggest that ABCF1 is released from and binds to shed POSs in an autocrine manner to facilitate RPE phagocytosis through a conserved pathway. Furthermore, the new approach is broadly applicable to many other phagocytes and will enable systematic elucidation of their ligands to understand extrinsic regulation and cargo recognition.  相似文献   

12.
The morphology of the retinal pigment epithelium (RPE), Bruch's membrane (complexus basalis), choriocapillaris and tapetum lucidum has been studied in the eye of the ranch mink (Mustela vison) by light and electron microscopy. The RPE is composed of a single layer of cells joined laterally by apically located junctional complexes. Basally (sclerally) these cells display numerous infoldings whereas apically (vitreally) two types of processes are associated with rod and cone outer segments. Smooth endoplasmic reticulum and mitochondria are abundant in these cells whereas rough endoplasmic reticulum and polysomes, although present, are not plentiful. An occasional wandering phagocyte is noted at the RPE-photoreceptor interface. In the posterosuperior part of the fundus, a degenerative tapetum lucidum is present. The presence of only a few layers of tapetal cells containing but little reflective material and the haphazard arrangement of this material makes it very unlikely that this area functions as an effective tapetum lucidum. The RPE over the aberrant tapetum, however, shows the morphology that is seen when a functioning tapetum cellulosum is present, namely the absence of melanosomes and an indented choriocapillaris. Bruch's membrane in non-tapetal areas is pentalaminate but, over the tapetum and where it is associated with capillary profiles, it is reduced to a single, thickened basal lamina. The choriocapillary endothelium is highly fenestrated and in nontapetal areas these capillaries are not indented into the epithelial layer.  相似文献   

13.
Oxidative stress has a key role in the pathogenesis of age-related macular degeneration (AMD). Cigarette smoking is known to the one of the main risk factors of AMD through oxidative stress-mediated endoplasmic reticulum (ER) stress and lipid accumulation in human retinal pigment epithelium (RPE) cells. A number of studies have investigated the benefits of antioxidants in the AMD. However, previous studies have not shown that efficacy of antioxidant in the treatment of AMD. Recent studies demonstrated that morin hydrate (MH) has antioxidant properties, anti-inflammatory, and antiapoptosis effects, however, the protective effects of MH against cigarette smoke extract (CSE)-induced AMD have not been studied in detail. We tested the potential effect of MH against the CSE-induced lipid accumulation in RPE cells and mice RPE layer. Herein, we observed that expose of RPE cells to CSE reduced cell viability, increased the lipid accumulation, ER stress, and oxidative stress. Concomitantly, CSE treatment to mice induced AMD associated histopathological changes, lipid accumulation, ER stress and oxidative stress in RPE layer. MH significantly attenuated cytotoxicity, lipid accumulation, ER stress, and oxidative stress via activated AMPK-Nrf2 signaling pathway in RPE cells and mice RPE layer. In addition, AMPK inhibition reversed MH-induced RPE cell protection against CSE. Thus, we conclude that MH protects RPE cells from CSE through reduced oxidative stress, ER stress, and lipid accumulation via activated AMPK-Nrf2-HO-1 signaling pathway. These findings suggest that MH treatment may be exploited in effective strategy against CSE-induced AMD.  相似文献   

14.
15.
To understand why the retinal pigment epithelium (RPE) has different potentials for neural differentiation in lower and higher vertebrates, the RPEs of adult newts and rats were compared under similar in vitro cultivation conditions. The RPEs of both animal species were organotypically cultivated within the posterior eye wall under constant rotation in the serum medium free of growth factors. Comparison of the cell morphology, proliferation, and expression of pan-neural markers demonstrated that the RPE cells of adult newts and rats under similar in vitro conditions displayed both similarities and differemces. They were able to synthesize DNA but rarely divided mitotically. In addition, part of the RPE cells of both the newt and the rat were dislodged from the layer, migrated, and acquired a macrophage phenotype. However, the majority of the cells retained the initial morphology and remained within the layer. In several cases, these cells displayed the initial characteristics of neural differentiation, namely, expression of pan-neural proteins. The difference between the newt and rat RPE cells was in the ability of the former to generate in vitro an additional row of dedifferentiated NF-200-positive cells, characteristic of in vivo newt retinal regeneration. These data demonstrate that the RPE cells of the adult newt and rat retain the potential of manifesting neural cell traits; however, more advanced changes towards differentiation are characteristic of only the newt RPE.  相似文献   

16.
Vascular endothelial growth factor (VEGF) secreted by the retinal pigment epithelium (RPE) plays an important role in ocular homeostasis, but also in diseases, most notably age-related macular degeneration (AMD). To date, anti-VEGF drugs like ranibizumab have been shown to be most effective in treating these pathologic conditions. However, clinical trials suggest that the RPE could degenerate and perish through anti-VEGF treatment. Herein, we evaluated possible pathways and outcomes of the interaction between ranibizumab and human RPE cells (ARPE-19). Results indicate that ranibizumab affects the VEGF-A metabolism in RPE cells from an extra- as well as intracellular site. The drug is taken up into the cells, with the VEGF receptor 2 (VEGFR-2) being involved, and decreases VEGF-A protein levels within the cells as well as extracellularly. Oxidative stress plays a key role in various inflammatory disorders of the eye. Our results suggest that oxidative stress inhibits RPE cell proliferation. This anti-proliferative effect on RPE cells is significantly enhanced through ranibizumab, which does not inhibit RPE cell proliferation substantially in absence of relevant oxidative stress. Therefore, we emphasize that anti-VEGF treatment should be selected carefully in AMD patients with preexistent extensive RPE atrophy.  相似文献   

17.
The retinal pigment epithelium (RPE) of the red-backed salamander (Plethodon cinerus) consists of a single layer of large squamous shaped cells. The RPE cells are but minimally infolded basally (sclerally) but show many large apical (vitreal) processes interdigitating with the rod outer segments. These epithelial cells are joined laterally by prominent tight junctions located in the mid region of the cells. Internally smooth endoplasmic reticulum is very plentiful while rough endoplasmic reticulum is not. Polysomes, small dense mitochondria and small round to oval melanosomes are plentiful. Golgi zones and lysosome-like bodies are also present as are phagosomes of outer segment material and myeloid bodies. The RPE cell nucleus is large and vesicular. It is felt that the melanosomes undergo retinomotor movements but as only light-adapted specimens were examined it is not known how extensive are these movements. Bruch's membrane or complexus basalis shows the typical pentalaminate structure noted for most vertebrates. The choriocapillaris is a single layer of large anastomosing capillaries which are minimally fenestrated facing Bruch's membrane.  相似文献   

18.
视网膜色素上皮(RPE)对视觉功能的维持起着至关重要的作用。视网膜变性是全球不可治愈性致盲疾病的重要原因,它由视网膜色素上皮功能失常所引起。因此,视网膜色素上皮移植是视网膜变性患者恢复视力的一种最有前景的手段之一。随着干细胞技术的快速发展,从多能干细胞(PSC)到有功能的视网膜色素上皮细胞的体外分化诱导技术已经成熟,其中包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)等。此外,从患者特异性iPSCs分化而来的RPE更能用于阐明发病机理并有针对性地个体治疗。更值得一提的是,经诱导得到RPE的移植不论在动物模型中,还是在临床试验里都已经得到了可喜的治疗效果。本文回顾PSC来源RPE干预治疗视网膜变性的最新研究进展。  相似文献   

19.
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.  相似文献   

20.
Haemochromatosis is a genetic disorder of iron overload resulting from loss-of-function mutations in genes coding for the iron-regulatory proteins HFE (human leucocyte antigen-like protein involved in iron homoeostasis), transferrin receptor 2, ferroportin, hepcidin and HJV (haemojuvelin). Recent studies have established the expression of all of the five genes in the retina, indicating their importance in retinal iron homoeostasis. Previously, we demonstrated that HJV is expressed in RPE (retinal pigment epithelium), the outer and inner nuclear layers and the ganglion cell layer. In the present paper, we report on the consequences of Hjv deletion on the retina in mice. Hjv-/- mice at ≥18 months of age had increased iron accumulation in the retina with marked morphological damage compared with age-matched controls; these changes were not found in younger mice. The retinal phenotype in Hjv-/- mice included hyperplasia of RPE. We isolated RPE cells from wild-type and Hjv-/- mice and examined their growth patterns. Hjv-/- RPE cells were less senescent and exhibited a hyperproliferative phenotype. Hjv-/- RPE cells also showed up-regulation of Slc7a11 (solute carrier family 7 member 11 gene), which encodes the 'transporter proper' subunit xCT in the heterodimeric amino acid transporter xCT/4F2hc (cystine/glutamate exchanger). BMP6 (bone morphogenetic protein 6) could not induce hepcidin expression in Hjv-/- RPE cells, confirming that retinal cells require HJV for induction of hepcidin via BMP6 signalling. HJV is a glycosylphosphatidylinositol-anchored protein, and the membrane-associated HJV is necessary for BMP6-mediated activation of hepcidin promoter in RPE cells. Taken together, these results confirm the biological importance of HJV in the regulation of iron homoeostasis in the retina and in RPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号