首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMOylation is a posttranslational process that attaches a small ubiquitin-like modifier (SUMO) to its target proteins covalently. SUMOylation controls multiple cellular processes through the recognition of SUMO by a SUMO-interacting motif (SIM). In this study, we developed assay systems for detecting noncovalent interactions between SUMO and SIM in cells using split-luciferase complementation. We applied a version of this assay to the detection of in vitro SUMO–SIM interactions using a bacterial expression system. These novel assays enable screening of inhibitors of SUMO-dependent protein–protein interactions, either in vivo or in vitro, in a high-throughput manner.  相似文献   

2.
3.
SUMO在转录中的抑制作用   总被引:2,自引:2,他引:0  
许多调控基因转录的重要蛋白质能被SUMO (small ubiquitin-related modifier)化修饰,这些蛋白质包括转录因子,转录辅助因子和染色质修饰酶.SUMO化修饰对底物蛋白的活性产生影响,在大多数情况下,与转录活性的抑制有关.最近,对SUMO化调控转录的机制有了新的认识,认为SUMO化的一个重要作用是促进转录因子与转录抑制因子之间的相互作用.另一方面,已经发现转录共抑制因子HDAC (组蛋白去乙酰化酶)可以作为SUMO化的底物、效应因子和调控因子,说明乙酰化和SUMO化之间复杂的相互作用对基因转录调控起着非常重要的作用.  相似文献   

4.
Dou H  Huang C  Van Nguyen T  Lu LS  Yeh ET 《FEBS letters》2011,585(18):2891-2896
To maintain genomic integrity, a cell must utilize multiple mechanisms to protect its DNA from the damage generated by environmental agents or DNA metabolism. SUMO (small ubiquitin-like modifier) can regulate protein stability, protein cellular location, and protein-protein interactions. In this review, we summarize the current understanding of the roles of SUMOylation and de-SUMOylation in DNA damage response (DDR) and DNA repair with a specific focus on the role of RPA SUMOylation in homologous recombination (HR).  相似文献   

5.
Although small ubiquitin-like modifier (SUMO) is conjugated to proteins involved in diverse cellular processes, the functional analysis of SUMOylated proteins is often hampered by low levels of specific SUMOylated proteins in the cell. Here we describe a SUMO-conjugating enzyme (Ubc9) fusion-directed SUMOylation (UFDS) system, which allows efficient and selective in vivo SUMOylation of proteins. Although SUMOylation of overexpressed p53 and STAT1 was difficult to detect in HEK293 cells, up to 40% of p53 and STAT1 were conjugated with endogenous SUMO when fused to Ubc9. We verified the specificity of UFDS using SUMOylation-site mutants and showed that the method is not dependent on SUMO ligases. Using UFDS we demonstrated that SUMOylation of STAT1 inhibits its phosphorylation at Tyr701 and discovered p53 multi-SUMOylation in vivo. We propose that UFDS will be useful for the analysis of function of SUMOylation in protein interactions, subcellular localization as well as enzymatic activity.  相似文献   

6.
7.
SUMO (small ubiquitin-like modifier) conjugation is a critically important control process in all eukaryotic cells, because it acts as a biochemical switch and regulates the function of hundreds of proteins in many different pathways. Although the diverse functional consequences and molecular targets of SUMOylation remain largely unknown, SUMOylation is becoming increasingly implicated in the pathophysiology of Alzheimer’s disease (AD). Apart from the central SUMO-modified disease-associated proteins, such as amyloid precursor protein, amyloid β, and tau, SUMOylation also regulates several other processes underlying AD. These are involved in inflammation, mitochondrial dynamics, synaptic transmission and plasticity, as well as in protective responses to cell stress. Herein, we review current reports on the involvement of SUMOylation in AD, and present an overview of potential SUMO targets and pathways underlying AD pathogenesis.  相似文献   

8.
Post-translational attachment of small ubiquitin-like modifier (SUMO), defined as SUMOylation, has emerged as a new mechanism of protein regulation in plant biology. In plant, SUMOylation has been shown to play crucial roles in a variety of biotic and abiotic stress responses. Recent work using viable mutants with defective SUMOylation have indicated an important role for SUMOylation in a wide range of developmental processes, such as cell division, expansion, survival and differentiation, vegetative growth and reproductive development. This review will summarize the currently emerging information regarding the function of SUMOylation in plant development.  相似文献   

9.
The crucial function of the PTEN tumor suppressor in multiple cellular processes suggests that its activity must be tightly controlled. Both, membrane association and a variety of post-translational modifications, such as acetylation, phosphorylation, and mono- and polyubiquitination, have been reported to regulate PTEN activity. Here, we demonstrated that PTEN is also post-translationally modified by the small ubiquitin-like proteins, small ubiquitin-related modifier 1 (SUMO1) and SUMO2. We identified lysine residue 266 and the major monoubiquitination site 289, both located within the C2 domain required for PTEN membrane association, as SUMO acceptors in PTEN. We demonstrated the existence of a crosstalk between PTEN SUMOylation and ubiquitination, with PTEN-SUMO1 showing a reduced capacity to form covalent interactions with monoubiquitin and accumulation of PTEN-SUMO2 conjugates after inhibition of the proteasome. Moreover, we found that virus infection induces PTEN SUMOylation and favors PTEN localization at the cell membrane. Finally, we demonstrated that SUMOylation contributes to the control of virus infection by PTEN.  相似文献   

10.
A hallmark of small ubiquitin-related modifier (SUMO) is the production of a C-terminal tail containing diglycines (GGs), which are believed to be required for SUMOylation. Whether GGs are required components in SUMOylation remains unanswered experimentally. In this study we found that the SUMO-1/3-AA/-GS/-GN/-GA mutant can form sodium dodecyl sulfate (SDS)-dithiothreitol (DTT)-resistant complexes with cellular proteins, indicating that the GG motif is not strictly required for SUMOylation.  相似文献   

11.
Something about SUMO inhibits transcription   总被引:1,自引:0,他引:1  
  相似文献   

12.
低氧诱导因子-1(hypoxia-inducible factor-1,HIF-1)是异二聚体的转录因子,由氧敏感的α亚基和在细胞内稳定表达的β亚基组成,在细胞低氧应答反应中起核心作用,能调节100多种涉及低氧应激下细胞适应和存活的靶基因.泛素是一种由76个氨基酸残基组成的保守性多肽,广泛存在真核生物中.SUMO是泛素样蛋白家族成员,分子量约为12 kD的小蛋白,从拟南芥到人类普遍存在.泛素和SUMO可共价结合许多靶底物蛋白,对其进行翻译后修饰,该过程分别称为泛素化与SUMO化.近来研究显示,HIF-1α的翻译后修饰如泛素化、SUMO化可调节其的稳定性,从而改变HIF 1α的转录激活活性.本文主要就HIF-1α泛素化及SUMO化修饰等问题作一综述.  相似文献   

13.
14.
15.
Caveolin (Cav) proteins in the plasma membrane have numerous binding partners, but the determinants of these interactions are poorly understood. We show here that Cav-3 has a small ubiquitin-like modifier (SUMO) consensus motif (ΨKX(D/E, where Ψ is a hydrophobic residue)) near the scaffolding domain and that Cav-3 is SUMOylated in a manner that is enhanced by the SUMO E3 ligase PIASy (protein inhibitor of activated STAT-y). Site-directed mutagenesis revealed that the consensus site lysine is the preferred SUMOylation site but that mutation of all lysines is required to abolish SUMOylation. Co-expression of a SUMOylation-deficient mutant of Cav-3 with β-adrenergic receptors (βARs) alters the expression level of β(2)ARs but not β(1)ARs following agonist stimulation, thus implicating Cav-3 SUMOylation in the mechanisms for β(2)AR but not β(1)AR desensitization. Expression of endothelial nitric-oxide synthase (NOS3) was not altered by the SUMOylation-deficient mutant. Thus, SUMOylation is a covalent modification of caveolins that influence the regulation of certain signaling partners.  相似文献   

16.
类泛素化修饰蛋白SUMO1的表达纯化及抗体制备   总被引:1,自引:1,他引:0  
SUMO是近年发现的类泛素化修饰蛋白,可通过异肽键共价连接到靶蛋白上,影响靶蛋白的细胞内定位、稳定性及与其它生物大分子的相互作用. 为研究蛋白质的SUMO化修饰,本文表达并利用亲和层析的方法纯化了重组的人SUMO1,制备了兔抗hSUMO1的多克隆抗体. 经ELISA和免疫印迹检测,获得了灵敏度高、特异性好的抗体,可用于SUMO化修饰靶蛋白的鉴定及SUMO化修饰的生物学功能研究.  相似文献   

17.
SUMOylation (small ubiquitin‐like modifier conjugation) is an important post‐translational modification which is becoming increasingly implicated in the altered protein dynamics associated with brain ischemia. The function of SUMOylation in cells undergoing ischemic stress and the identity of small ubiquitin‐like modifier (SUMO) targets remain in most cases unknown. However, the emerging consensus is that SUMOylation of certain proteins might be part of an endogenous neuroprotective response. This review brings together the current understanding of the underlying mechanisms and downstream effects of SUMOylation in brain ischemia, including processes such as autophagy, mitophagy and oxidative stress. We focus on recent advances and controversies regarding key central nervous system proteins, including those associated with the nucleus, cytoplasm and plasma membrane, such as glucose transporters (GLUT1, GLUT4), excitatory amino acid transporter 2 glutamate transporters, K+ channels (K2P1, Kv1.5, Kv2.1), GluK2 kainate receptors, mGluR8 glutamate receptors and CB1 cannabinoid receptors, which are reported to be SUMO‐modified. A discussion of the roles of these molecular targets for SUMOylation could play following an ischemic event, particularly with respect to their potential neuroprotective impact in brain ischemia, is proposed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号