首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Gateway® recombination technology has revolutionized the method of gene cloning for functional analyses and high-throughput ORFeome projects. In general, Gateway cloning is highly efficient because after LR recombination and bacterial transformation, only cells containing the recombinant destination clone are selected on an antibiotic selection plate. However, when the antibiotic resistance gene for bacterial selection is the same in the entry and destination vectors, the direct selection of recombinant destination clones on an antibiotic plate is difficult. Here, we demonstrate an efficient and comprehensive approach to obtain positive destination clones directly on an antibiotic selection plate in this situation. The strategy involves polymerase chain reaction (PCR)-mediated amplification of the entry clone using entry vector-specific primers that bind outside the attL sequences and the subsequent use of this purified PCR product for LR recombination with the destination vector. Our results suggest that cloning of linear DNA fragments into circular destination vectors through LR recombination is an efficient method for inserts up to 7 kb in size. Using this approach, the yield of colony PCR positive destination clones was 100 % for genes of various sizes tested in our experiments.  相似文献   

2.
Gateway技术是一种通用型克隆方法,其基于λ噬菌体位点特异性重组,将目的DNA快速克隆到各种与Gateway技术兼容的目的载体上,不需要进行酶切和连接反应。但存在获得入门克隆过程中相关反应酶制剂价格昂贵,且药品订购时间较长等问题。通过对入门载体pDONR207的改造,使之产生3’端具有单个T 末端的线性化的入门载体,采用TA克隆的方法替代BP反应,从而简便、经济和快速地获得入门克隆。利用改造后的Gateway技术构建拟南芥SOS2基因的原核表达载体和真核表达载体,通过原核表达和原生质体瞬时表达证明通过此方法构建的表达载体在原核细胞和真核细胞中都得到了很好的表达。  相似文献   

3.
The generation of DNA constructs is often a rate-limiting step in conducting biological experiments. Recombination cloning of single DNA fragments using the Gateway system provided an advance over traditional restriction enzyme cloning due to increases in efficiency and reliability. Here we introduce a series of entry clones and a destination vector for use in two, three, and four fragment Gateway MultiSite recombination cloning whose advantages include increased flexibility and versatility. In contrast to Gateway single-fragment cloning approaches where variations are typically incorporated into model system-specific destination vectors, our Gateway MultiSite cloning strategy incorporates variations in easily generated entry clones that are model system-independent. In particular, we present entry clones containing insertions of GAL4, QF, UAS, QUAS, eGFP, and mCherry, among others, and demonstrate their in vivo functionality in Drosophila by using them to generate expression clones including GAL4 and QF drivers for various trp ion channel family members, UAS and QUAS excitatory and inhibitory light-gated ion channels, and QUAS red and green fluorescent synaptic vesicle markers. We thus establish a starter toolkit of modular Gateway MultiSite entry clones potentially adaptable to any model system. An inventory of entry clones and destination vectors for Gateway MultiSite cloning has also been established (www.gatewaymultisite.org).  相似文献   

4.
Gateway-compatible vectors for plant functional genomics and proteomics   总被引:12,自引:0,他引:12  
Gateway cloning technology facilitates high-throughput cloning of target sequences by making use of the bacteriophage lambda site-specific recombination system. Target sequences are first captured in a commercially available "entry vector" and are then recombined into various "destination vectors" for expression in different experimental organisms. Gateway technology has been embraced by a number of plant laboratories that have engineered destination vectors for promoter specificity analyses, protein localization studies, protein/protein interaction studies, constitutive or inducible protein expression studies, gene knockdown by RNA interference, or affinity purification experiments. We review the various types of Gateway destination vectors that are currently available to the plant research community and provide links and references to enable additional information to be obtained concerning these vectors. We also describe a set of "pEarleyGate" plasmid vectors for Agrobacterium-mediated plant transformation that translationally fuse FLAG, HA, cMyc, AcV5 or tandem affinity purification epitope tags onto target proteins, with or without an adjacent fluorescent protein. The oligopeptide epitope tags allow the affinity purification, immunolocalization or immunoprecipitation of recombinant proteins expressed in vivo. We demonstrate the utility of pEarleyGate destination vectors for the expression of epitope-tagged proteins that can be affinity captured or localized by immunofluorescence microscopy. Antibodies detecting the FLAG, HA, cMyc and AcV5 tags show relatively little cross-reaction with endogenous proteins in a variety of monocotyledonous and dicotyledonous plants, suggesting broad utility for the tags and vectors.  相似文献   

5.
Gateway克隆技术已得到广泛的应用。该技术先通过BP反应将目标片段连到带有完整attL特异识别位点的入门载体,然后与终载体通过LR反应得到表达载体。Gateway克隆方法与传统的酶切连接方法相比有快速简单等优点。但是,BP和LR酶都非常昂贵。本研究首先对3个常用Gateway载体的atts特异位点序列比对发现,attL序列核心交换位点“core attL”的21~22 bp长的碱基是保守和必要的。由此,设计含有core-attL序列的引物,通过PCR克隆得到DNA片段并连入pMD18-T载体,然后进行LR反应,可成功得到目标表达载体,并在保守的位点上正确重组。本研究还对其中一个带有绿色荧光蛋白基因的表达载体转化至烟草,能够正常表达该蛋白质。结果表明,通过将含有attL核心位点基因片段连接到pMD18-T载体上,可以省略BP反应而将目标片段连接到终载体上,节约了反应时间和成本。  相似文献   

6.
Recombination-based restrictionless, ligation-independent cloning has been proven to be advantageous over restriction digestion and ligation cloning. To utilize the recombination cloning and previously constructed two-hybrid cDNA libraries, a new Gateway yeast two-hybrid bait vector, pEZY202, and a new prey vector, pEZY45, were constructed. The two-hybrid vectors were generated by in vitro recombination using a protocol that can be easily adapted for the conversion of other existing vectors. The new vectors were used to assay the interaction between the WW domain of PQBP1 (PQBPww) and the WW domain binding protein WBP11. Both PQBPww and WBP11 were cloned into a Gateway donor vector by in vitro recombination. They were then subcloned into pEZY45 and pEZY202, respectively, by in vitro recombination. The binding between PQBPww and WBP11 was reported in a two-hybrid experiment using the new vectors. The results of testing the new vectors in combination with the original vectors indicated that the new bait vector could be used to screen cDNA libraries that are constructed using the original prey vectors.  相似文献   

7.
8.
9.
At present, only few methods for the effective assembly of multigene constructs have been described. Here we present an improved version of the MultiRound Gateway technology, which facilitates plant multigene transformation. The system consists of two attL-flanked entry vectors, which contain an attR cassette, and a transformation-competent artificial chromosome based destination vector. By alternate use of the two entry vectors, multiple transgenes can be delivered sequentially into the Gateway-compatible destination vector. Multigene constructs that carried up to seven transgenes corresponding to more than 26 kb were assembled by seven rounds of LR recombination. The constructs were successfully transformed into tobacco plants and were stably inherited for at least two generations. Thus, our system represents a powerful, highly efficient tool for multigene plant transformation and may facilitate genetic engineering of agronomic traits or the assembly of genetic pathways for the production of biofuels, industrial or pharmaceutical compounds in plants.  相似文献   

10.
We describe a cloning and expression system which is based on the Escherichia coli T7 expression system and Gateway recombination technology. We have produced numerous destination vectors with selected fusion tags and an additional set of entry vectors containing the gene of interest and optional labeling tags. This powerful system enables us to transfer a cDNA to several expression vectors in parallel and combine them with various labeling tags. To remove the attached amino terminal tags along with the unwanted attB1 site, we inserted PreScission protease cleavage sites. In contrast to the commercially available destination vectors, our plasmids provide kanamycin resistance, which can be an advantage when expressing toxic proteins in E. coli. Some small-scale protein expression experiments are shown to demonstrate the usefulness of these novel Gateway vectors. In summary, this system has some benefits over the widely used and commercially available Gateway standard system, and it enables many different combinations for expression constructs from a single gene of interest.  相似文献   

11.
A Gateway-based platform for multigene plant transformation   总被引:2,自引:0,他引:2  
The post-genomic era offers unrivalled opportunities for genetic manipulation of polygenic traits, multiple traits, and multiple gene products. However, remaining technical hurdles make the manipulation of multiple genes in plants difficult. Here we describe a Gateway-based vector system to enable multiple transgenes to be directly linked or fused. The vector system consists of a destination vector and two special attL-flanked entry vectors each containing an attR cassette incompatible with the attL. By multiple rounds of LR recombination reactions, which we call MultiRound Gateway, multiple transgenes can be delivered sequentially and indefinitely into the Gateway-compatible destination vector through alternate use of the two special entry vectors. In our proof-of-principle experiments we have used this vector system to construct a plant transformation vector containing seven functional DNA fragments, including a screening marker gene, two reporter genes and four matrix attachment region sequences. This system provides a platform for fully realizing the potential of plant genetic manipulation.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

12.
We describe a noncommercial alternative method to create entry clones compatible with all kinds of destination vectors based on an improved TA cloning approach. To generate Gateway T vectors, we first constructed gentamicin- and chloramphenicol-resistant entry vectors designated pGWG and pGWC, respectively. Each entry vector contains an AhdI cassette flanked by attL sites, with each AhdI cassette containing two AhdI restriction enzyme sites spaced by the ccdB killer gene, which is lethal to most Escherichia coli strains. Gateway T vectors can be prepared by simple digestion of these entry vectors with the AhdI enzyme or its isoschizomers. The use of the ccdB gene as a negative selection marker is an important improvement over conventional TA cloning in that it eliminates the necessity of blue/white color screening based on alpha-complementation. Another important improvement that we have implemented is to retail the T vectors using Taq polymerase and dTTP so as to improve the cloning efficiency. Together, these improvements allow TA cloning to realize its full potential. Using Gateway T vectors prepared by this improved method, entry clones for PCR products or restriction enzyme fragments can be created simply, efficiently, and inexpensively while at the same time introducing greater compatibility.  相似文献   

13.
In this age of massive genetic and protein information, a fast and reliable method of studying in vivo protein-protein interactions is necessary. We have developed a novel system that can overcome limitations of existing assay methods. This new method adopts two existing systems for fast analysis of diverse protein-protein interactions. For rapid, large-scale cloning, we adopted the Gateway system and developed novel destination vectors containing YFP N-terminus (YN) or YFP C-terminus (YC) to visualize protein-protein interactions in vivo using bimolecular fluorescence complementation (BiFC). Using this system, we investigated molecular interactions among the three POZ-domain regulatory proteins mAPM-1, LRF, KLHL10 that belong to a subgroup of human POZ-domain proteins, and showed that the POZ-domains of mAPM-1, LRF and KLHL10 could form both homodimers and heterodimers. This new method is a highly efficient, sensitive and specific assay method for protein-protein interaction in vivo.  相似文献   

14.
We report here a development of the MultiSite Gateway(TM)-based versatile plasmid construction system applicable for the rapid and efficient preparation of Aspergillus oryzae expression plasmids. This system allows the simultaneous connection of the three DNA fragments inserted in entry clones along with a destination vector in a defined order and orientation. We prepared a variety of entry clones and destination vectors containing promoters, genes encoding carrier-proteins and fusion tags, and selectable markers, which makes it possible to generate 80 expression plasmids for each target protein. Using this system, plasmids for expression of the EGFP fused with the mitochondrial-targeting signal of citrate synthase (AoCit1) were generated. Tubular structures of mitochondria were visualized in the transformants expressing the AoCit1-EGFP fusion protein. This plasmid construction system allows us to prepare a large number of expression plasmids without laborious DNA manipulations, which would facilitate molecular biological studies on A. oryzae.  相似文献   

15.
细菌双杂交系统是一种用于检测体内蛋白质互作的方法,该方法互补腺苷酸环化酶功能,通过检测细胞表达的β-半乳糖苷酶LacZ的活性,分析蛋白质互作能力.但在应用过程中,发现存在操作繁琐、灵敏度低、难实现高通量操作等缺陷.本研究目的是对原有细菌双杂交进行优化,建立一种操作方便、可批量操作、具有较高灵敏度和能够实现实时监测的细菌...  相似文献   

16.
From Gateway to MultiSite Gateway in one recombination event   总被引:1,自引:0,他引:1  

Background  

Invitrogen Gateway technology exploits the integrase/att site-specific recombination system for directional cloning of PCR products and the subsequent subcloning into destination vectors. One or three DNA segments can be cloned using Gateway or MultiSite Gateway respectively. A vast number of single-site Gateway destination vectors have been created while MultiSite Gateway is limited to few destination vectors and therefore to few applications. The aim of this work was to make the MultiSite Gateway technology available for multiple biological purposes.  相似文献   

17.
Gateway technology is a powerful system for converting a single entry vector into a wide variety of expression vectors. We expressed recombinant influenza matrix protein M1 (FMP), a potent antigen for cytotoxic T cells, using the Gateway vector pET-DEST42 containing the FMP cDNA, and purified the expressed FMP as a single 32 kDa recombinant protein. N-terminal and internal protein sequencing, however, showed that the recombinant FMP contained an extra 10 amino acids fused to the N-terminal of native FMP. Further investigation of the DNA sequence adjacent to the 5'-FMP cDNA indicated that the "TTG" in the attB1 site (30 bp upstream of the "ATG" in the 5'-FMP cDNA) behaved as a dominant translation start site, resulting in a 10 amino acid extension of the recombinant FMP. Thus, it is possible that recombinant proteins produced by this Gateway vector contain unexpected vector-derived peptides, which may affect experimental outcomes.  相似文献   

18.
We report the construction of two Gateway fungal expression vectors pCBGW and pGWBF. The pCBGW was generated by introducing an expression cassette, which consists of a Gateway recombinant cassette (attR1-Cmr-ccdB-attR2) under the control of fungal promoter PgpdA and a terminator TtrpC, into the multiple cloning site of fungal vector pCB1004. The pGWBF is a binary vector, which was generated from the plant expression vector pGWB2 by replacing the CaMV35S promoter with PgpdA. The pGWBF can be transformed into fungi efficiently with Agrobacterium-mediated transformation. The applicability of two newly constructed vectors was tested by generating the destination vectors pGWBF-GFP and pCBGW-GFP and examining the expression of GFP gene in Trichoderma viride and Gibberella fujikuroi, respectively. Combining with the advantage of Gateway cloning technology, pCBGW and pGWBF will be useful in fungi for large-scale investigation of gene functions by constructing the interested gene destination/expression vectors in a high-throughput way.  相似文献   

19.
20.
Yeast two-hybrid analysis is a valuable approach to the discovery and characterization of protein interactions. We have developed vectors that can indicate the presence of an insert when used in two-hybrid bait and prey construction by gap repair cloning. The strategy uses a recombination cloning site flanked by sequences encoding the GAL4 activation and binding domains. After gap repair cloning in standard hosts carrying an ADE2 reporter gene, disruption of GAL4 by an insert can be identified by the development of red colony color, while empty vector plasmids produce white colonies. Function in yeast two-hybrid applications was initially validated using known interacting proteins in pair-wise analyses, and subsequently, the bait vectors were used in library screens with the mouse Mad212 and human Mccd1 proteins, identifying a number of putative new interactions for these proteins. These vectors should facilitate high-throughput yeast two-hybrid screens in which large numbers of bait and prey constructs may be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号