首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of dimorphic breeding systems may involve changes in ecophysiological traits as well as floral morphology because of greater resource demands on females. Differences between related species suggest that ecophysiological traits should be heritable, and species with higher female frequencies should show greater sexual differentiation. We used modified partial diallel crossing designs to estimate narrow-sense heritabilities and genetic correlations of sex-specific ecophysiological and morphological traits in closely related gynodioecious Schiedea salicaria (13% females) and Schiedea adamantis (39% females). In S. salicaria, hermaphrodites and females differed in photosynthetic rate and specific leaf area (SLA). Narrow-sense heritabilities were significant for stomatal conductance, SLA and inflorescence number in hermaphrodites, and for SLA and inflorescence number in females. Schiedea adamantis had no sexual dimorphism in measured traits; stomatal conductance, stem number and inflorescence number were heritable in females, and stem number was heritable in hermaphrodites. In both species, significant genetic correlations of traits between sexes were rare, indicating that traits can evolve independently in response to sex-differential selection. Significant genetic correlations were detected between certain traits within sexes of both species. Low heritability of some ecophysiological traits may reflect low additive genetic variability or high phenotypic plasticity in these traits.  相似文献   

2.
Sexual dimorphism may be especially pronounced in wind-pollinated species because they lack the constraints of biotically pollinated species that must present their pollen and stigmas in similar positions to ensure pollen transfer. Lacking these constraints, the sexes of wind-pollinated species may diverge in response to the different demands of pollen dispersal and receipt, depending on the magnitude of genetic correlations preventing divergence between sexes. Patterns of sexual dimorphism and genetic variation were investigated for inflorescence traits in Schiedea adamantis (Caryophyllaceae), a species well adapted to wind-pollination, and compared to S. salicaria, a species with fewer adaptations to wind pollination. For S. adamantis, dimorphism was pronounced for inflorescence condensation and its components, including lateral flower number and pedicel length. Within sexes, genetic correlations between traits may constrain the relative shape of the inflorescence. Correlations detected across sexes may retard the evolution of sexual dimorphism in inflorescence structure, including features favoring enhanced dispersal and receipt of pollen. Despite genetic correlations across sexes, common principal components analysis showed that genetic variance-covariance matrices (G matrices) differed significantly between the sexes, in part because of greater genetic variation for flower number in hermaphrodites than in females. G matrices also differed between closely related S. adamantis and S. salicaria, indicating the potential for divergent evolution of inflorescence structure despite general similarities in morphology and pollination biology.  相似文献   

3.
Sex allocation theory addresses how separate sexes can evolve from hermaphroditism but little is known about the genetic potential for shifts in sex allocation in flowering plants. We tested assumptions of this theory using the common currency of biomass and measurements of narrow-sense heritabilities and genetic correlations in Schiedea salicaria, a gynodioecious species under selection for greater differentiation of the sexes. Female (carpel) biomass showed heritable variation in both sexes. Male (stamen) biomass in hermaphrodites also had significant heritability, suggesting the potential for further evolution of dioecy. Significant positive genetic correlations between females and hermaphrodites in carpel mass may slow differentiation between the sexes. Within hermaphrodites, there were no negative genetic correlations between male and female biomass as assumed by models for the evolution of dioecy, suggesting that S. salicaria is capable of further changes in biomass allocation to male and female functions and evolution toward dioecy.  相似文献   

4.
The transition from biotic to abiotic pollination was investigated using Schiedea, a genus exhibiting a remarkable diversity of inflorescence architecture associated with pollination biology. Heritabilities and genetic correlations of inflorescence traits were estimated in gynodioecious Schiedea salicaria (Caryophyllaceae), a species that has likely undergone a recent transition to wind-pollination. Using a partial diallel crossing design, significant narrow-sense heritabilities were detected for inflorescence condensation (h2 = 0.56 to 0.68 in the two sexes) and other traits related to the extent of wind pollination in Schiedea species. Heritabilities were generally higher in hermaphrodites than in females. Strong genetic correlations may constrain the evolution of some inflorescence traits that facilitate wind pollination, such as simultaneous shortening of inflorescence length and elongation of the subtending internode. The presence of significant narrow-sense heritabilities for traits associated with wind pollination suggests, however, that selection for more effective wind pollination in the windy, pollinator-limited environments where S. salicaria grows could lead to the evolution of the highly condensed inflorescences characteristic of other wind-pollinated species of Schiedea.  相似文献   

5.
Both changes in sex allocation and pollination mode may promote the separation of sexes in plant populations. Simultaneous evolution of wind pollination and dimorphism has occurred in Schiedea, where species with different female frequencies provide an opportunity to observe the effect of wind pollination on sex allocation and floral morphology. Differences among species in the ratio of anther to ovary volume were not the result of sex allocation trade-offs, but instead resulted from production of vestigial stamens in females; there were no changes in ovary volume in males and hermaphrodites (MH) of dimorphic species. Relative to hermaphroditic species, dimorphic species had more condensed inflorescences, a pattern often associated with wind pollination. Within dimorphic species, MH had longer filament lengths than females, and females had longer stigmas than MHs. These traits are characteristic of wind pollination, but there was no relationship between the degree of sexual dimorphism and female frequency. Ovary volume and ovule number and size had positive phenotypic correlations between females and MH of dimorphic species, making sex specialization more difficult. In dimorphic Schiedea species, selection for wind pollination may have a greater effect on floral traits than trade-offs in allocation between male and female function.  相似文献   

6.
Abstract Levels of selfing and resource allocation patterns were investigated in Schiedea salicaria (Caryophyllaceae), a gynodioecious species with high levels of inbreeding depression and nuclear control of male sterility. Selfing levels were higher in hermaphrodites than females, especially when adjusted for early acting inbreeding depression. The sexes of S. salicaria were similar in most allocation patterns including number of flowers and capsules per inflorescence, seeds per flower, and seed mass. Seeds produced by females had higher levels of germination than seeds of hermaphrodites, a likely result of high selfing levels and the expression of inbreeding depression in the progeny of hermaphrodites. Invasion of females in populations of S. salicaria is probably related to the expression of inbreeding depression at germination and in later life history stages. Comparisons with related species of Schiedea that also have nuclear control of male sterility suggest that reallocation of resources in hermaphrodites to male function occurs as females increase in frequency, but that resource reallocation is not important for the success of females when they first invade populations.  相似文献   

7.
Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii.  相似文献   

8.
Abstract The evolution of dioecy was studied in Schiedea (Caryophyllaceae), a genus endemic to the Hawaiian Islands. Eight of the 22 species are diclinous, possessing gynodioecious, subdioecious, or dioecious breeding systems. A biogeographic analysis of the genus indicates that the ancestor of Schiedea colonized early in the history of the Hawaiian Islands. Subsequently, hermaphroditic species appear to have engaged in inter-island colonization more frequently than diclinous species. For this reason, single-island endemism and dicliny are more common on the older Hawaiian Islands. Strong inbreeding depression was detected in three species of Schiedea , indicating that genetic factors have played a role in the evolution of dicliny. Depending on the level of natural selfing, the expression of inbreeding depressioin may have favored the outcrossed progeny of rare females in populations, and eventually the evolution of dioecy. In contrast to evidence for inbreeding depression, there was very little evidence that resource allocation, sex lability, or habitat partitioning have played an important role in the evolution of dioecy. In subdioecious S. globosa hermaphrodites were largely male in function, and in gynodioecious S. salicaria females and hermaphrodites were equivalent in nearly all aspects of female function that could be measured. Variation in breeding systems in Schiedea and the closely related Alsinidendron may result from the past history of population bottlenecks that have resulted in varying levels of inbreeding depression.  相似文献   

9.
Abstract The degree of sexual dimorphism in a trait may be determined directly by disruptive selection, as well as by correlations with other traits under selection. We grew seeds from nine populations of the dioecious plant Silene latifolia in a common‐garden experiment to determine whether phenotypic variation and correlations existed for floral, leaf and resource allocation traits, and whether this variation had a genetic component. We also determined the traits which were sexually dimorphic, the degree of dimorphism, and whether it varied among populations. Seven traits exhibited among‐population variation and sexual dimorphism. Variation in the degree of dimorphism occurred only for two traits, suggesting that dimorphism may be evolving more slowly than trait means. Males had more, smaller flowers, shorter leaves, and allocated less of their total biomass to stems and more to leaves than females. Flower production was the most sexually dimorphic trait and was correlated with all measured traits. Most traits exhibited significant correlations between the sexes. The pattern of correlations and the degree of sexual dimorphism among traits lead us to suggest that intrasexual selection for an exaggerated floral display in males has indirectly led to sexual dimorphism in a host of other traits.  相似文献   

10.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

11.
The trajectory of phenotypic evolution is constrained in the short term by genetic correlations among traits. However, the extent to which genetic correlations impose a lasting constraint is generally unknown. Here, I examine the genetic architecture of life-history variation in male and female gametophytes from two populations of the moss Ceratodon purpureus, focusing on genetic correlations within and between the sexes. A significant negative correlation between allocation to vegetative and reproductive tissue was evident in males of both populations, but not females. All traits showed between-sex correlations of significantly less than one, indicating additive genetic variance for sexual dimorphism. The degree of dimorphism for traits was significantly negatively associated with the strength of the between-sex correlation. The structure of genetic correlations among life-history traits was more divergent between the two populations in females than in males. Collectively, these results suggest that genetic correlations do not impose a lasting constraint on the evolution of life-history variation in the species.  相似文献   

12.
Genetic correlations between the sexes can constrain the evolution of sexual dimorphism and be difficult to alter, because traits common to both sexes share the same genetic underpinnings. We tested whether artificial correlational selection favoring specific combinations of male and female traits within families could change the strength of a very high between-sex genetic correlation for flower size in the dioecious plant Silene latifolia. This novel selection dramatically reduced the correlation in two of three selection lines in fewer than five generations. Subsequent selection only on females in a line characterized by a lower between-sex genetic correlation led to a significantly lower correlated response in males, confirming the potential evolutionary impact of the reduced correlation. Although between-sex genetic correlations can potentially constrain the evolution of sexual dimorphism, our findings reveal that these constraints come not from a simple conflict between an inflexible genetic architecture and a pattern of selection working in opposition to it, but rather a complex relationship between a changeable correlation and a form of selection that promotes it. In other words, the form of selection on males and females that leads to sexual dimorphism may also promote the genetic phenomenon that limits sexual dimorphism.  相似文献   

13.
The evolution of dioecy in plants is expected to be followed by sex-specific selection, leading to sexual dimorphism. The extent of the response to selection depends on the genetic covariance structure between traits both within and between the sexes. Here I describe an investigation to determine phenotypic and genetic correlations between reproductive traits within cryptically dioecious Thalictrum pubescens and within morphologically dioecious T. dioicum. Females of T. pubescens produce flowers having stamens and pistils, appearing hermaphroditic. Genetic correlations were estimated as family-mean correlations among paternal half-sib families. Positive phenotypic and genetic correlations between parts of the same reproductive organs, as the anther and filament of the stamen, indicate developmental associations between these traits in both species. Negative genetic correlations were detected between pistil number and size of reproductive organs in T. dioicum and showed the same direction, but not significance, in T. pubescens. There was a negative phenotypic correlation between the number of stamens and the number of pistils within female flowers of T. pubescens. Within T. pubescens, there was a positive genetic correlation between the number of stamens in males and the number of pistils in females, indicating that floral evolution in males and females may not be independent in this species.  相似文献   

14.
Many species exhibit sexual dimorphism in a variety of characters, and the underlying genetic architecture of dimorphism potentially involves sex-specific differences in the additive-genetic variance-covariance matrix (G) of dimorphic traits. We investigated the quantitative-genetic structure of dimorphic traits in the dioecious plant Silene latifolia by estimating G (including within-sex matrices, G(m), G(f), and the between-sex variance-covariance matrix, B), and the phenotypic variance-covariance matrix (P) for seven traits. Flower number was the most sexually dimorphic trait, and was significantly genetically correlated with all traits within each sex. Negative genetic correlations between flower size and number suggested a genetic trade-off in investment, but positive environmental correlations between the same traits resulted in no physical evidence for a trade-off in the phenotype. Between-sex genetic covariances for homologous traits were always greater than 0 but smaller than 1, showing that some, but not all, of the variation in traits is caused by genes or alleles with sex-limited expression. Using common principal-components analysis (CPCA), a maximum-likelihood (ML) estimation approach, and element-by-element comparison to compare matrices, we found that G(m) and G(f) differed significantly in eigenstructure because of dissimilarity in covariances involving leaf traits, suggesting the presence of variation in sex-limited genes with pleiotropic effects and/or linkage between sex-limited loci. The sex-specific structure of G is expected to cause differences in the correlated responses to selection within each sex, promoting the further evolution and maintenance of dimorphism.  相似文献   

15.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components.  相似文献   

16.
Parker TH  Garant D 《Heredity》2005,95(5):401-407
We studied phenotypic patterns and underlying quantitative genetics of development of sexual size dimorphism in red junglefowl (Gallus gallus). Using a multigenerational pedigree and the 'animal model' technique, we found significant heritability for many of the size and growth-related traits we examined, as well as significant genetic correlations among them. Despite sexual size dimorphism throughout posthatching ontogeny, the genetic correlation between males and females for all size measurements and growth parameters remained high. Significant positive phenotypic and genetic correlations between the fastest rate of growth and mass at week 26 (near asymptote) indicate that faster growth when young promotes larger adult size. However, age at which peak growth is reached does not appear to be phenotypically or genetically correlated with adult size. Positive genetic correlations within traits among ages were common, demonstrating that the genetic variance important to growth is relatively consistent among ages. However, male mass and tarsus length showed no genetic correlation between week 0 values and those from later ages. The body size traits of mass and tarsus length were genetically correlated with each other in females, but this pattern was not significant in males. Thus, despite striking sexual dimorphism in size and growth trajectories, size dimorphic traits in junglefowl show, with some exceptions, genetic integration between the sexes, among ages, and between traits.  相似文献   

17.
Abstract The evolution of sexual dimorphism may occur when natural and sexual selection result in different optimum trait values for males and females. Perhaps the most prominent examples of sexual dimorphism occur in sexually selected traits, for which males usually display exaggerated trait levels, while females may show reduced expression of the trait. In some species, females also exhibit secondary sexual traits that may either be a consequence of a correlated response to sexual selection on males or direct sexual selection for female secondary sexual traits. In this experiment, we simultaneously measure the intersex genetic correlations and the relative strength of sexual selection on males and females for a set of cuticular hydrocarbons in Drosophila serrata . There was significant directional sexual selection on both male and female cuticular hydrocarbons: the strength of sexual selection did not differ among the sexes but males and females preferred different cuticular hydrocarbons. In contrast with many previous studies of sexual dimorphism, intersex genetic correlations were low. The evolution of sexual dimorphism in D. serrata appears to have been achieved by sex-limited expression of traits controlled by genes on the X chromosome and is likely to be in its final stages.  相似文献   

18.
Abstract To understand how genetic constraints may limit the evolution of males and sexual dimorphism in a gynodioecious species, I conducted a quantitative genetic experiment in a gynodioecious wild strawberry, Fragaria virginiana . I estimated and compared genetic parameters (narrow-sense heritabilities, between-trait and between-sex genetic correlations, as well as phenotypic and genetic variance-covariance matrices) in the two sex morphs from three populations grown in a common field garden. I measured pollen and ovule production per flower, petal size, fruit set, and flower number. My major findings are as follows. (1) The presence of a phenotypic trade-off between pollen production and fruit set in hermaphrodites reflects a negative genetic correlation in the narrow sense that is statistically significant when pooled across populations. (2) The main constraints on the evolution of males are low genetic variation for pollen per flower and strong positive correlations associated with ovule number (e.g., between pollen and ovules in hermaphrodites, and between ovules in hermaphrodites and females). (3) Traits with the lowest levels of sexual dimorphism (ovule number and flower number) have the highest between-sex genetic correlations suggesting that overlap in the expression of genes in the sex morphs constrains their independent evolution. (4) There are significant differences in G matrices between sex morphs but not among populations. However, evidence that male-female trait correlations in hermaphrodites were lower in populations with higher frequencies of females may indicate subtle changes in genetic architecture.  相似文献   

19.
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

20.
The extent to which sexual dimorphism can evolve within a population depends on an interaction between sexually divergent selection and constraints imposed by a genetic architecture that is shared between males and females. The degree of constraint within a population is normally inferred from the intersexual genetic correlation, r(mf) . However, such bivariate correlations ignore the potential constraining effect of genetic covariances between other sexually coexpressed traits. Using the fruit fly Drosophila serrata, a species that exhibits mutual mate preference for blends of homologous contact pheromones, we tested the impact of between-sex between-trait genetic covariances using an extended version of the genetic variance-covariance matrix, G, that includes Lande's (1980) between-sex covariance matrix, B. We find that including B greatly reduces the degree to which male and female traits are predicted to diverge in the face of divergent phenotypic selection. However, the degree to which B alters the response to selection differs between the sexes. The overall rate of male trait evolution is predicted to decline, but its direction remains relatively unchanged, whereas the opposite is found for females. We emphasize the importance of considering the B-matrix in microevolutionary studies of constraint on the evolution of sexual dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号