首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brandt G  Carrasco N  Huang Z 《Biochemistry》2006,45(29):8972-8977
Because oxygen and selenium are in the same group (Family VI) in the periodic table, the site-specific mutagenesis at the atomic level by replacing RNA oxygen with selenium can provide insights on the structure and function of catalytic RNAs. We report here the first Se-derivatized ribozymes transcribed with all nucleoside 5'-(alpha-P-seleno)triphosphates (NTPalphaSe, including A, C, G, and U). We found that T7 RNA polymerase recognizes NTPalphaSe Sp diastereomers as well as the natural NTPs, whereas NTPalphaSe Rp diastereomers are neither substrates nor inhibitors. We also demonstrated the catalytic activity of these Se-derivatized hammerhead ribozymes by cleaving the RNA substrate, and we found that these phosphoroselenoate ribozymes can be as active as the native one. These hammerhead ribozymes site-specifically mutagenized by selenium reveal the close relationship between the catalytic activities and the replaced oxygen atoms, which provides insight on the participation of oxygen in catalysis or intramolecular interaction. This demonstrates a convenient strategy for the mechanistic study of functional RNAs. In addition, the active ribozymes site-specifically derivatized by selenium will allow for convenient MAD phasing in X-ray crystal structure studies.  相似文献   

2.
Lambert D  Heckman JE  Burke JM 《Biochemistry》2006,45(23):7140-7147
Native hammerhead ribozymes contain RNA domains that enable high catalytic activity under physiological conditions, where minimal hammerheads show little activity. However, little is known about potential differences in native versus minimal ribozyme folding. Here, we present results of photocross-linking analysis of native and minimal hammerheads containing photoreactive nucleobases 6-thioguanosine, 2,6-diaminopurine, 4-thiouridine, and pyrrolocytidine, introduced at specific sites within the catalytic core. Under conditions where catalytic activity is observed, the two substrate nucleobases spanning the cleavage site approach and stack upon G8 and G12 of the native hammerhead, two conserved nucleobases that show similar behavior in minimal constructs, have been implicated in general acid-base catalysis, and are >15 A from the cleavage site in the crystal structures. Pyrrolocytidine at cleavage site position 17 forms an efficient crosslink to G12, and the crosslinked RNA retains catalytic activity. Multiple cross-linked species point to a structural rearrangement within the U-turn, positioning residue G5 in the vicinity of cleavage site position 1.1. Intriguing crosslinks were triggered by nucleotide analogues at positions distal to the crosslinked residues; for example, 6-thioguanosine at position 5 induced a crosslink between G12 and C17, suggesting an intimate functional communication among these three nucleobases. Together, these results support a model in which the native hammerhead folds to an active structure similar to that of the minimal ribozyme, and significantly different from the crystallographic structures.  相似文献   

3.
Elucidation of the catalytic mechanism and structure—function relationship studies of the hammerhead ribozyme continue to be an area of intensive research. A combination of diverse approaches, such as X ray crystallography, spectral studies, chemical modifications, sequence variations and kinetic analyses, have provided valuable insight into the cleavage mechanism of this ribozyme. The hammerhead ribozyme crystal structures have provided valuable insight into conformational deformations needed to attain the catalytically active structure. Similarly, determination of ribozyme solution structure by spectroscopic analyses and the effect of divalent metal ions on RNA folding has further aided in the construction of a model for hammerhmead catalysis.  相似文献   

4.
Analysis of the catalytic activity of identical mutations in the catalytic cores of nHH8, a very active "extended" hammerhead, and HH16, a less active "minimal" hammerhead, reveal that the tertiary Watson-Crick base pair between C3 and G8 seen in the recent structure of the Schistosoma mansoni extended hammerhead can be replaced by other base pairs in both backgrounds. This supports the model that both hammerheads utilize a similar catalytic mechanism but HH16 is slower because it infrequently samples the active conformation. The relative effect of different mutations at positions 3 and 8 also depends on the identity of residue 17 in both nHH8 and HH16. This synergistic effect can best be explained by transient pairing between residues 3 and 17 and 8 and 13, which stabilize an inactive conformation. Thus, mutants of nHH8 and possibly nHH8 itself are also in dynamic equilibrium with an inactive conformation that may resemble the X-ray structure of a minimal hammerhead. Therefore, both minimal and extended hammerhead structures must be considered to fully understand hammerhead catalysis.  相似文献   

5.
The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly.  相似文献   

6.
The recent X-ray crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni containing the rate-enhancing peripheral domain has a catalytic core that is very different from the catalytic core present in the structure of the "minimal" hammerhead, which lacks a peripheral domain (Martick and Scott, 2006). The new structure reconciles many of the disagreements between the minimal hammerhead structure and the biochemical data on the cleavage properties of chemically modified hammerheads. The new structure also emphasizes the dynamic nature of small RNA domains and provides a cautionary tale for everyone who tries to use structure to understand function.  相似文献   

7.
ABSTRACT

Hammerhead ribozymes are a model system for studying molecular mechanism of RNA catalysis. Physicochemical data-driven mechanistic studies are an indispensable step towards understanding the catalysis of hammerhead ribozymes. Here we characterized a model RNA duplex with catalytically important sheared-type G12-A9 base pair and A9-G10.1 metal ion-binding motif in hammerhead ribozymes. By using high magnetic field NMR, all base proton signals, including catalytic residues, were unambiguously assigned. We further characterized structural features of this RNA molecule and found that it reflects the structural features of the A9-G10.1 motif of hammerhead ribozymes. Therefore, this RNA molecule is suitable for extracting an intrinsic physicochemical properties of catalytically important residues.  相似文献   

8.
Martick M  Scott WG 《Cell》2006,126(2):309-320
Minimal hammerhead ribozymes have been characterized extensively by static and time-resolved crystallography as well as numerous biochemical analyses, leading to mutually contradictory mechanistic explanations for catalysis. We present the 2.2 A resolution crystal structure of a full-length Schistosoma mansoni hammerhead ribozyme that permits us to explain the structural basis for its 1000-fold catalytic enhancement. The full-length hammerhead structure reveals how tertiary interactions occurring remotely from the active site prime this ribozyme for catalysis. G-12 and G-8 are positioned consistent with their previously suggested roles in acid-base catalysis, the nucleophile is aligned with a scissile phosphate positioned proximal to the A-9 phosphate, and previously unexplained roles of other conserved nucleotides become apparent within the context of a distinctly new fold that nonetheless accommodates the previous structural studies. These interactions permit us to explain the previously irreconcilable sets of experimental results in a unified, consistent, and unambiguous manner.  相似文献   

9.
Structure-function relationships in RNA and RNP enzymes: recent advances   总被引:3,自引:0,他引:3  
Hoogstraten CG  Sumita M 《Biopolymers》2007,87(5-6):317-328
The structural biology of ribozymes and ribonucleoprotein (RNP) enzymes is now sufficiently advanced that a true dialogue between structural and functional studies is possible. In this review, we consider three important systems in which an integration of structural and biochemical data has recently led to major advances in mechanistic understanding. In the hammerhead ribozyme, application-driven biochemical studies led to the discovery of a key structural interaction that had been omitted from previously-studied constructs. A new crystal structure of the resulting, tertiary-stabilized hammerhead has resolved a remarkable number of longstanding paradoxes in the structure-function relationship of this ribozyme. In the Group I intron ribozyme, a flurry of high-resolution structures has largely confirmed, but in some cases refined or challenged, a detailed model of a metalloenzyme active site that had previously been derived by meticulous quantitative metal ion rescue experiments. Finally, for the peptidyl transferase center of the ribosome, recent biochemical and chemical results motivated by the pioneering crystal structures have suggested a picture of a catalytic mechanism dominated by proximity and orientation effects and substrate-assisted catalysis. These results refocus attention on catalysis as a property of the integrated RNP machinery as a whole, as opposed to a narrow concern with the RNA functional groups in immediate contact with the reactive center.  相似文献   

10.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

11.
Chimeras of the well-characterized minimal hammerhead 16 and nine extended hammerheads derived from natural viroids and satellite RNAs were constructed with the goal of assessing whether their very different peripheral tertiary interactions modulate their catalytic properties. For each chimera, three different assays were used to determine the rate of cleavage and the fraction of full-length hammerhead at equilibrium and thereby deduce the elemental cleavage ( k 2) and ligation ( k -2) rate constants. The nine chimeras were all more active than minimal hammerheads and exhibited a very broad range of catalytic properties, with values of k 2 varying by 750-fold and k -2 by 100-fold. At least two of the hammerheads exhibited an altered dependence of k obs on magnesium concentration. Since much less catalytic diversity is observed among minimal hammerheads that lack the tertiary interactions, a possible role for the different tertiary interaction is to modulate the hammerhead cleavage properties in viroids. For example, differing hammerhead cleavage and ligation rates could affect the steady state concentrations of linear, circular, and polymeric genomes in infected cells.  相似文献   

12.
13.
14.
Canny MD  Jucker FM  Pardi A 《Biochemistry》2007,46(12):3826-3834
The hammerhead ribozyme from Schistosoma mansoni is the best characterized of the natural hammerhead ribozymes. Biophysical, biochemical, and structural studies have shown that the formation of the loop-loop tertiary interaction between stems I and II alters the global folding, cleavage kinetics, and conformation of the catalytic core of this hammerhead, leading to a ribozyme that is readily cleaved under physiological conditions. This study investigates the ligation kinetics and the internal equilibrium between cleavage and ligation for the Schistosoma hammerhead. Single turnover kinetic studies on a construct where the ribozyme cleaves and ligates substrate(s) in trans showed up to 23% ligation when starting from fully cleaved products. This was achieved by an approximately 2000-fold increase in the rate of ligation compared to a minimal hammerhead without the loop-loop tertiary interaction, yielding an internal equilibrium that ranges from 2 to 3 at physiological Mg2+ ion concentrations (0.1-1 mM). Thus, the natural Schistosoma hammerhead ribozyme is almost as efficient at ligation as it is at cleavage. The results here are consistent with a model where formation of the loop-loop tertiary interaction leads to a higher population of catalytically active molecules and where formation of this tertiary interaction has a much larger effect on the ligation than the cleavage activity of the Schistosoma hammerhead ribozyme.  相似文献   

15.
Kinetics of intermolecular cleavage by hammerhead ribozymes.   总被引:30,自引:0,他引:30  
M J Fedor  O C Uhlenbeck 《Biochemistry》1992,31(48):12042-12054
The hammerhead catalytic RNA effects cleavage of the phosphodiester backbone of RNA through a transesterification mechanism that generates products with 2'-3'-cyclic phosphate and 5'-hydroxyl termini. A minimal kinetic mechanism for the intermolecular hammerhead cleavage reaction includes substrate binding, cleavage, and product release. Elemental rate constants for these steps were measured with six hammerhead sequences. Changes in substrate length and sequence had little effect on the rate of the cleavage step, but dramatic differences were observed in the substrate dissociation and product release steps that require helix-coil transitions. Rates of substrate binding and product dissociation correlated well with predictions based on the behavior of simple RNA duplexes, but substrate dissociation rates were significantly faster than expected. Ribozyme and substrate alterations that eliminated catalytic activity increased the stability of the hammerhead complex. These results suggest that substrate destabilization may play a role in hammerhead catalysis.  相似文献   

16.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

17.
The hammerhead ribozyme, a small catalytic RNA molecule, cleaves, in the presence of magnesium ions, a specific phosphodiester bond within its own backbone, leading to 23-cyclic phosphate and 5-OH extremities. In order to study the dynamical flexibility of the hammerhead RNA, we performed molecular dynamics simulations of the solvated crystal structure of an active hammerhead ribozyme, obtained after flash-freezing crystals soaked with magnesium. Because of a careful equilibration protocol and the use of the Ewald summation in calculating the electrostatic interactions, the RNA structure remained close to the crystal structure, as attested by a root-mean-square deviation below 2.5 A after 750 ps of simulation. All Watson-Crick base pairs were intact at the end of the simulations. The tertiary interactions, such as the sheared G.A pairs and the U-turn, important for the stabilisation of the three-dimensional RNA fold, were also retained. The results demonstrate that molecular dynamics simulations can be successfully used to investigate the dynamical behaviour of a ribozyme, thus, opening a road to study the role of transient structural changes involved in ribozyme catalysis.  相似文献   

18.
Trans-cleaving hammerhead ribozymes with long target-specific antisense sequences flanking the catalytic domain share some features with conventional antisense RNA and are therefore termed 'catalytic antisense RNAs'. Sequences 5' to the catalytic domain form helix I and sequences 3' to it form helix III when complexed with the target RNA. A catalytic antisense RNA of more than 400 nucleotides, and specific for the human immunodeficiency virus type 1 (HIV-1), was systematically truncated within the arm that constituted originally a helix I of 128 base pairs. The resulting ribozymes formed helices I of 13, 8, 5, 3, 2, 1 and 0 nucleotides, respectively, and a helix III of about 280 nucleotides. When their in vitro cleavage activity was compared with the original catalytic antisense RNA, it was found that a helix I of as little as three nucleotides was sufficient for full endonucleolytic activity. The catalytically active constructs inhibited HIV-1 replication about four-fold more effectively than the inactive ones when tested in human cells. A conventional hammerhead ribozyme having helices of just 8 nucleotides on either side failed to cleave the target RNA in vitro when tested under the conditions for catalytic antisense RNA. Cleavage activity could only be detected after heat-treatment of the ribozyme substrate mixture which indicates that hammerhead ribozymes with short arms do not associate as efficiently to the target RNA as catalytic antisense RNA. The requirement of just a three-nucleotide helix I allows simple PCR-based generation strategies for asymmetric hammerhead ribozymes. Advantages of an asymmetric design will be discussed.  相似文献   

19.
Although the hammerhead reaction proceeds most efficiently in divalent cations, cleavage in 4 M LiCl is only approximately 10-fold slower than under standard conditions of 10 mM MgCl2 (Murray et al., Chem Biol, 1998, 5:587-595; Curtis & Bartel, RNA, 2001, this issue, pp. 546-552). To determine if the catalytic mechanism with high concentrations of monovalent cations is similar to that with divalent cations, we compared the activities of a series of modified hammerhead ribozymes in the two ionic conditions. Nearly all of the modifications have similar deleterious effects under both reaction conditions, suggesting that the hammerhead adopts the same general catalytic structure with both monovalent and divalent cations. However, modification of three ligands previously implicated in the binding of a functional divalent metal ion have substantially smaller effects on the cleavage rate in Li+ than in Mg2+. This result suggests that an interaction analogous to the interaction made by this divalent metal ion is absent in the monovalent reaction. Although the contribution of this divalent metal ion to the overall reaction rate is relatively modest, its presence is needed to achieve the full catalytic rate. The role of this ion appears to be in facilitating formation of the active structure, and any direct chemical role of metal ions in hammerhead catalysis is small.  相似文献   

20.
Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain.   总被引:10,自引:0,他引:10  
Several mixed DNA/RNA and 2'-O-methylribonucleotide/RNA analogues derived from the "hammerhead" domain of RNA catalysis have been prepared to study the minimum ribonucleotide requirement for catalytic activity. Oligodeoxyribonucleotides containing from seven to as few as four ribonucleotides are active in cleaving a substrate RNA. Predominantly deoxyribonucleotide-containing analogues have kcat values 20-300 and kcat/KM values approximately 100-2000 times lower than those of all-RNA ribozyme. In the case of predominantly 2'-O-methyl analogues, at least five ribonucleotides are needed to assure catalytic activity. In addition, both predominantly deoxyribonucleotide and 2'-O-methyl oligomers are at least 3 orders of magnitude more stable than an all-RNA ribozyme in incubations with RNase A and a yeast extract. These results suggest that the ribophosphate backbone is not a strict requirement for ribozyme-type catalysis. The identification of the four required ribonucleotides in the hammerhead catalytic domain provides valuable information for the rational design of chemical species having ribonuclease activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号