首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fast algorithms for large-scale genome alignment and comparison   总被引:35,自引:5,他引:30       下载免费PDF全文
We describe a suffix-tree algorithm that can align the entire genome sequences of eukaryotic and prokaryotic organisms with minimal use of computer time and memory. The new system, MUMmer 2, runs three times faster while using one-third as much memory as the original MUMmer system. It has been used successfully to align the entire human and mouse genomes to each other, and to align numerous smaller eukaryotic and prokaryotic genomes. A new module permits the alignment of multiple DNA sequence fragments, which has proven valuable in the comparison of incomplete genome sequences. We also describe a method to align more distantly related genomes by detecting protein sequence homology. This extension to MUMmer aligns two genomes after translating the sequence in all six reading frames, extracts all matching protein sequences and then clusters together matches. This method has been applied to both incomplete and complete genome sequences in order to detect regions of conserved synteny, in which multiple proteins from one organism are found in the same order and orientation in another. The system code is being made freely available by the authors.  相似文献   

2.
MOTIVATION: To allow a direct comparison of the genomic DNA sequences of sufficiently similar organisms, there is an urgent need for software tools that can align more than two genomic sequences. RESULTS: We developed new algorithms and a software tool 'Multiple Genome Aligner' (MGA for short) that efficiently computes multiple genome alignments of large, closely related DNA sequences. For example, it can align 85% percent of the complete genomes of six human adenoviruses (average length 35305 bp.) in 159 seconds. An alignment of 74% of the complete genomes of three of strains of E. coli (lengths: 5528445; 5498450; 4639221 approximately bp.) is produced in 30 minutes.  相似文献   

3.
We have sequenced two complete chloroplast genomes in the Asteraceae, Helianthus annuus (sunflower), and Lactuca sativa (lettuce), which belong to the distantly related subfamilies, Asteroideae and Cichorioideae, respectively. The Helianthus chloroplast genome is 151?104 bp and the Lactuca genome is 152?772 bp long, which is within the usual size range for chloroplast genomes in flowering plants. When compared to tobacco, both genomes have two inversions: a large 22.8-kb inversion and a smaller 3.3-kb inversion nested within it. Pairwise sequence divergence across all genes, introns, and spacers in Helianthus and Lactuca has resulted in the discovery of new, fast-evolving DNA sequences for use in species-level phylogenetics, such as the trnY-rpoB, trnL-rpl32, and ndhC-trnV spacers. Analysis and categorization of shared repeats resulted in seven classes useful for future repeat studies: double tandem repeats, three or more tandem repeats, direct repeats dispersed in the genome, repeats found in reverse complement orientation, hairpin loops, runs of A's or T's in excess of 12 bp, and gene or tRNA similarity. Results from BLAST searches of our genomic sequence against expressed sequence tag (EST) databases for both genomes produced eight likely RNA edited sites (C → U changes). These detailed analyses in Asteraceae contribute to a broader understanding of plastid evolution across flowering plants.  相似文献   

4.
Kim S  Kang J  Chung YJ  Li J  Ryu KH 《Proteins》2008,71(3):1113-1122
The quality of orthologous protein clusters (OPCs) is largely dependent on the results of the reciprocal BLAST (basic local alignment search tool) hits among genomes. The BLAST algorithm is very efficient and fast, but it is very difficult to get optimal solution among phylogenetically distant species because the genomes with large evolutionary distance typically have low similarity in their protein sequences. To reduce the false positives in the OPCs, thresholding is often employed on the BLAST scores. However, the thresholding also eliminates large numbers of true positives as the orthologs from distant species likely have low BLAST scores. To rectify this problem, we introduce a new hybrid method combining the Recursive and the Markov CLuster (MCL) algorithms without using the BLAST thresholding. In the first step, we use InParanoid to produce n(n-1)/2 ortholog tables from n genomes. After combining all the tables into one, our clustering algorithm clusters ortholog pairs recursively in the table. Then, our method employs MCL algorithm to compute the clusters and refines the clusters by adjusting the inflation factor. We tested our method using six different genomes and evaluated the results by comparing against Kegg Orthology (KO) OPCs, which are generated from manually curated pathways. To quantify the accuracy of the results, we introduced a new intuitive similarity measure based on our Least-move algorithm that computes the consistency between two OPCs. We compared the resulting OPCs with the KO OPCs using this measure. We also evaluated the performance of our method using InParanoid as the baseline approach. The experimental results show that, at the inflation factor 1.3, we produced 54% more orthologs than InParanoid sacrificing a little less accuracy (1.7% less) than InParanoid, and at the factor 1.4, produced not only 15% more orthologs than InParanoid but also a higher accuracy (1.4% more) than InParanoid.  相似文献   

5.
BLAST (Basic Local Alignment Search Tool) searches against DNA and protein sequence databases have become an indispensable tool for biomedical research. The proliferation of the genome sequencing projects is steadily increasing the fraction of genome-derived sequences in the public databases and their importance as a public resource. We report here the availability of Genomic BLAST, a novel graphical tool for simplifying BLAST searches against complete and unfinished genome sequences. This tool allows the user to compare the query sequence against a virtual database of DNA and/or protein sequences from a selected group of organisms with finished or unfinished genomes. The organisms for such a database can be selected using either a graphic taxonomy-based tree or an alphabetical list of organism-specific sequences. The first option is designed to help explore the evolutionary relationships among organisms within a certain taxonomy group when performing BLAST searches. The use of an alphabetical list allows the user to perform a more elaborate set of selections, assembling any given number of organism-specific databases from unfinished or complete genomes. This tool, available at the NCBI web site http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/genom_table_cgi, currently provides access to over 170 bacterial and archaeal genomes and over 40 eukaryotic genomes.  相似文献   

6.
7.
Versatile and open software for comparing large genomes   总被引:1,自引:0,他引:1       下载免费PDF全文
The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows other developers to contribute to the code base and freely redistribute the code. The MUMmer sources are available at .  相似文献   

8.
Eucaryotic transposable genetic elements with inverted terminal repeats   总被引:22,自引:0,他引:22  
S Potter  M Truett  M Phillips  A Maher 《Cell》1980,20(3):639-647
DNA carrying inverted repeats was tested for transposition within the Drosophila genome. Five Bam HI segments containing related inverted repeats were isolated from D. melanogaster and analyzed by electron microscopy and restriction mapping. Southern blot experiments using single-copy flanking sequences as probes allowed the study of DNA arrangements at specific sites in the genomes of five closely related strains. We found that in some genomes the sequences with inverted repeats were present at a particular site, whereas in other genomes they were absent from this site. These results indicated that three of the sequences are transposable genetic elements. In one case we have purified the two corresponding DNA segments, with and without the sequence containing inverted repeats, thereby confirming the mobility of this sequence. These DNA elements were found to be distinct in two ways from copia and others previously described: first, they contain inverted terminal repeats, and second, they have a more heterogeneous construction.  相似文献   

9.
MOTIVATION: Complex genomes contain numerous repeated sequences, and genomic duplication is believed to be a main evolutionary mechanism to obtain new functions. Several tools are available for de novo repeat sequence identification, and many approaches exist for clustering homologous protein sequences. We present an efficient new approach to identify and cluster homologous DNA sequences with high accuracy at the level of whole genomes, excluding low-complexity repeats, tandem repeats and annotated interspersed repeats. We also determine the boundaries of each group member so that it closely represents a biological unit, e.g. a complete gene, or a partial gene coding a protein domain. RESULTS: We developed a program called HomologMiner to identify homologous groups applicable to genome sequences that have been properly marked for low-complexity repeats and annotated interspersed repeats. We applied it to the whole genomes of human (hg17), macaque (rheMac2) and mouse (mm8). Groups obtained include gene families (e.g. olfactory receptor gene family, zinc finger families), unannotated interspersed repeats and additional homologous groups that resulted from recent segmental duplications. Our program incorporates several new methods: a new abstract definition of consistent duplicate units, a new criterion to remove moderately frequent tandem repeats, and new algorithmic techniques. We also provide preliminary analysis of the output on the three genomes mentioned above, and show several applications including identifying boundaries of tandem gene clusters and novel interspersed repeat families. AVAILABILITY: All programs and datasets are downloadable from www.bx.psu.edu/miller_lab.  相似文献   

10.
11.
Prokaryotic genomes seem to be optimized toward compactness and have therefore been thought to lack long redundant DNA sequences. However, we identified a large number of long strict repeats in eight prokaryotic complete genomes and found that their density is negatively correlated with genome size. A detailed analysis of the long repeats present in the genome of Bacillus subtilis revealed a very strict constraint on the spatial distribution of repeats in this genome. We interpret this as the hallmark of selection processes leading to the addition of new genetic information. Such addition is independent of insertion sequences and relies on the nonspecific DNA uptake by the competent cell and its subsequent integration in the chromosome in a circular form through a Campbell-like mechanism. Similar patterns are found in other competent genomes of Gram-negative bacteria and Archaea, suggesting a similar evolutionary mechanism. The correlation of the spatial distribution of repeats and the absence of insertion sequences in a genome may indicate, in the framework of our model, that mechanisms aiming at their avoidance/elimination have been developed.  相似文献   

12.
Transposable elements (TEs) are mobile, repetitive DNA sequences that are almost ubiquitous in prokaryotic and eukaryotic genomes. They have a large impact on genome structure, function and evolution. With the recent development of high-throughput sequencing methods, many genome sequences have become available, making possible comparative studies of TE dynamics at an unprecedented scale. Several methods have been proposed for the de novo identification of TEs in sequenced genomes. Most begin with the detection of genomic repeats, but the subsequent steps for defining TE families differ. High-quality TE annotations are available for the Drosophila melanogaster and Arabidopsis thaliana genome sequences, providing a solid basis for the benchmarking of such methods. We compared the performance of specific algorithms for the clustering of interspersed repeats and found that only a particular combination of algorithms detected TE families with good recovery of the reference sequences. We then applied a new procedure for reconciling the different clustering results and classifying TE sequences. The whole approach was implemented in a pipeline using the REPET package. Finally, we show that our combined approach highlights the dynamics of well defined TE families by making it possible to identify structural variations among their copies. This approach makes it possible to annotate TE families and to study their diversification in a single analysis, improving our understanding of TE dynamics at the whole-genome scale and for diverse species.  相似文献   

13.
Reciprocal Best Hits (RBH) are a common proxy for orthology in comparative genomics. Essentially, a RBH is found when the proteins encoded by two genes, each in a different genome, find each other as the best scoring match in the other genome. NCBI''s BLAST is the software most usually used for the sequence comparisons necessary to finding RBHs. Since sequence comparison can be time consuming, we decided to compare the number and quality of RBHs detected using algorithms that run in a fraction of the time as BLAST. We tested BLAT, LAST and UBLAST. All three programs ran in a hundredth to a 25th of the time required to run BLAST. A reduction in the number of homologs and RBHs found by the faster algorithms compared to BLAST becomes apparent as the genomes compared become more dissimilar, with BLAT, a program optimized for quickly finding very similar sequences, missing both the most homologs and the most RBHs. Though LAST produced the closest number of homologs and RBH to those produced with BLAST, UBLAST was very close, with either program producing between 0.6 and 0.8 of the RBHs as BLAST between dissimilar genomes, while in more similar genomes the differences were barely apparent. UBLAST ran faster than LAST, making it the best option among the programs tested.  相似文献   

14.
Xu J  Fonseca DM 《Mitochondrial DNA》2011,22(5-6):155-158
Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.  相似文献   

15.
We represent all DNA sequences as points in twelve-dimensional space in such a way that homologous DNA sequences are clustered together, from which a new genomic space is created for global DNA sequences comparison of millions of genes simultaneously. More specifically, basing on the contents of four nucleotides, their distances from the origin and their distribution along the sequences, a twelve-dimensional vector is given to any DNA sequence. The applicability of this analysis on global comparison of gene structures was tested on myoglobin, beta-globin, histone-4, lysozyme, and rhodopsin families. Members from each family exhibit smaller vector distances relative to the distances of members from different families. The vector distance also distinguishes random sequences generated based on same bases composition. Sequence comparisons showed consistency with the BLAST method. Once the new gene is discovered, we can compute the location of this new gene in our genomic space. It is natural to predict that the properties of this new gene are similar to the properties of known genes that are locating near by. Biologists can do various experiments to test these properties.  相似文献   

16.
17.
Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution   总被引:8,自引:0,他引:8  
Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identification of large numbers of potentially variable regions, as well as a comparison of the relative recombination potentials of different genomic regions. Different trends are perceptible among mycoplasmas, probably due to different functional and structural constraints. The largest potential for illegitimate recombination in M.pulmonis is found at the vsa locus and its comparison in two different strains reveals numerous changes since divergence. On the other hand, the main M.pneumoniae and M.genitalium adhesins rely on large distant repeats and, hence, homologous recombination for variation. However, the relation between the existence of repeats and antigenic variation is not necessarily straightforward, since repeats of P1 adhesin were found to be anti-correlated with epitopes recognized by patient antibodies. These different strategies have important consequences for the structures of genomes, since large distant repeats correlate well with the major chromosomal rearrangements. Probably to avoid such events, mycoplasmas strongly avoid inverse repeats, in comparison to co-oriented repeats.  相似文献   

18.
Repeat elements are important components of eukaryotic genomes. One limitation in our understanding of repeat elements is that most analyses rely on reference genomes that are incomplete and often contain missing data in highly repetitive regions that are difficult to assemble. To overcome this problem we develop a new method, REPdenovo, which assembles repeat sequences directly from raw shotgun sequencing data. REPdenovo can construct various types of repeats that are highly repetitive and have low sequence divergence within copies. We show that REPdenovo is substantially better than existing methods both in terms of the number and the completeness of the repeat sequences that it recovers. The key advantage of REPdenovo is that it can reconstruct long repeats from sequence reads. We apply the method to human data and discover a number of potentially new repeats sequences that have been missed by previous repeat annotations. Many of these sequences are incorporated into various parasite genomes, possibly because the filtering process for host DNA involved in the sequencing of the parasite genomes failed to exclude the host derived repeat sequences. REPdenovo is a new powerful computational tool for annotating genomes and for addressing questions regarding the evolution of repeat families. The software tool, REPdenovo, is available for download at https://github.com/Reedwarbler/REPdenovo.  相似文献   

19.

Background

An important task in a metagenomic analysis is the assignment of taxonomic labels to sequences in a sample. Most widely used methods for taxonomy assignment compare a sequence in the sample to a database of known sequences. Many approaches use the best BLAST hit(s) to assign the taxonomic label. However, it is known that the best BLAST hit may not always correspond to the best taxonomic match. An alternative approach involves phylogenetic methods, which take into account alignments and a model of evolution in order to more accurately define the taxonomic origin of sequences. Similarity-search based methods typically run faster than phylogenetic methods and work well when the organisms in the sample are well represented in the database. In contrast, phylogenetic methods have the capability to identify new organisms in a sample but are computationally quite expensive.

Results

We propose a two-step approach for metagenomic taxon identification; i.e., use a rapid method that accurately classifies sequences using a reference database (this is a filtering step) and then use a more complex phylogenetic method for the sequences that were unclassified in the previous step. In this work, we explore whether and when using top BLAST hit(s) yields a correct taxonomic label. We develop a method to detect outliers among BLAST hits in order to separate the phylogenetically most closely related matches from matches to sequences from more distantly related organisms. We used modified BILD (Bayesian Integral Log-Odds) scores, a multiple-alignment scoring function, to define the outliers within a subset of top BLAST hits and assign taxonomic labels. We compared the accuracy of our method to the RDP classifier and show that our method yields fewer misclassifications while properly classifying organisms that are not present in the database. Finally, we evaluated the use of our method as a pre-processing step before more expensive phylogenetic analyses (in our case TIPP) in the context of real 16S rRNA datasets.

Conclusion

Our experiments make a good case for using a two-step approach for accurate taxonomic assignment. We show that our method can be used as a filtering step before using phylogenetic methods and provides a way to interpret BLAST results using more information than provided by E-values and bit-scores alone.
  相似文献   

20.
Mitochondrial genome diversity in closely related species provides an excellent platform for investigation of chromosome architecture and its evolution by means of comparative genomics. In this study, we determined the complete mitochondrial DNA sequences of eight Candida species and analyzed their molecular architectures. Our survey revealed a puzzling variability of genome architecture, including circular- and linear-mapping and multipartite linear forms. We propose that the arrangement of large inverted repeats identified in these genomes plays a crucial role in alterations of their molecular architectures. In specific arrangements, the inverted repeats appear to function as resolution elements, allowing genome conversion among different topologies, eventually leading to genome fragmentation into multiple linear DNA molecules. We suggest that molecular transactions generating linear mitochondrial DNA molecules with defined telomeric structures may parallel the evolutionary emergence of linear chromosomes and multipartite genomes in general and may provide clues for the origin of telomeres and pathways implicated in their maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号