首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of this study was to assess the effect of strenuous endurance training on day-to-day changes in oxygen uptake (VO2) on-kinetics (time constant) at the onset of exercise. Four healthy men participated in strenuous training for 30 min.day-1, 6 days.week-1 for 3 weeks. The VO2 was measured breath-by-breath every day except Sunday at exercise intensities corresponding to the lactate threshold (LT) and the onset of blood lactate accumulation (OBLA) which were obtained before training. Furthermore, an incremental exercise test was performed to determine LT, OBLA and maximal oxygen uptake (VO2max) before and after the training period and every weekend. The 30-min heavy endurance training was performed on a cycle ergometer 5 days.week-1 for 3 weeks. Another six men served as the control group. After training, significant reductions of the VO2 time constant for exercise at the pretraining LT exercise intensity (P less than 0.05) and at OBLA exercise intensity (P less than 0.01) were observed, whereas the VO2 time constants in the control group did not change significantly. A high correlation between the decrease in the VO2 time constant and training day was observed in exercise at the pretraining LT exercise intensity (r = -0.76; P less than 0.001) as well as in the OBLA exercise intensity (r = -0.91; P less than 0.001). A significant reduction in the blood lactate concentration during submaximal exercise and in the heart rate on-kinetics was observed in the training group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present study was designed to evaluate the specificity of physiological adaptation to extra endurance training in five female competitive walkers and six female distance runners. The mean velocity (v) during training, corresponding to 4 mM blood lactate [onset of blood lactate accumulation (OBLA)] during treadmill incremental exercise (training v was 2.86 m.s-1, SD 0.21 in walkers and 4.02 m.s-1, SD 0.11 in runners) was added to their normal training programme and was performed for 20 min, 6 days a week for 8 weeks, and was called extra training. An additional six female distance runners performed only their normal training programme every day for about 120 min at an exercise intensity equivalent to their lactate threshold (LT) (i.e. a running v of about 3.33 m.s-1). After the extra training, there were statistically significant increases in blood lactate variables (i.e. oxygen uptake (VO2) at LT, v at LT, VO2 at OBLA, v at OBLA; P less than 0.05), and running v for 3,000 m (P less than 0.01) in the running training group. In the walking training group, there were significant increases in blood lactate variables (i.e., v at LT, v at OBLA; P less than 0.05), and walking economy. In contrast, there were no significant changes in lactate variables, running v and economy in the group of runners which carried out only the normal training programme. It is suggested that the changes in blood lactate variables such as LT and OBLA played a role in improving v of both the distance runners and the competitive walkers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To assess the most important determinant for successful distance running (800 m, 1500 m and 3000 m events) in female athletes, measurements of several anaerobic indices were made (peak power, mean power) using the Wingate anaerobic test (WAnT), and aerobic indices such as oxygen uptake (VO2) or running velocity (v) at lactate threshold (LT), VO2 or v at onset of blood lactate accumulation (OBLA), running economy (RE), and maximal oxygen uptake were determined using the incremental treadmill test. The RE was represented by a VO2 value measured at 240 m.min-1 of a standard treadmill velocity. A stepwise multiple regression analysis (SAS stepwise procedure) combined the best features of forward inclusion and backward elimination to determine the most important factors in predicting the performance of running these distances as dependent variables. The stepwise procedure showed that the blood lactate variables such as LT and/or OBLA are highly correlated with, and contributed to predicting performance running 800 m-3000 m, whereas the anaerobic component was related only to running 800 m. In conclusion, blood lactate variables account for a large part of the variation in distance running performance in female as in male runners. The component of the anaerobic system which can be measured by the WAnT was shown to contribute to performance in running 800 m, but not in longer distances.  相似文献   

5.
Threshold for muscle lactate accumulation during progressive exercise   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the relationship between muscle and blood lactate concentrations during progressive exercise. Seven endurance-trained male college students performed three incremental bicycle ergometer exercise tests. The first two tests (tests I and II) were identical and consisted of 3-min stage durations with 2-min rest intervals and increased by 50-W increments until exhaustion. During these tests, blood was sampled from a hyperemized earlobe for lactate and pH measurement (and from an antecubital vein during test I), and the exercise intensities corresponding to the lactate threshold (LT), individual anaerobic threshold (IAT), and onset of blood lactate accumulation (OBLA) were determined. The test III was performed at predetermined work loads (50 W below OBLA, at OBLA, and 50 W above OBLA), with the same stage and rest interval durations of tests I and II. Muscle biopsies for lactate and pH determination were taken at rest and immediately after the completion of the three exercise intensities. Blood samples were drawn simultaneously with each biopsy. Muscle lactate concentrations increased abruptly at exercise intensities greater than the "below-OBLA" stage [50.5% maximal O2 uptake (VO2 max)] and resembled a threshold. An increase in blood lactate and [H+] also occurred at the below-OBLA stage; however, no significant change in muscle [H+] was observed. Muscle lactate concentrations were highly correlated to blood lactate (r = 0.91), and muscle-to-blood lactate ratios at below-OBLA, at-OBLA, and above-OBLA stages were 0.74, 0.63, 0.96, and 0.95, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The purpose of this study was to examine the effect of endurance training on oxygen uptake (VO(2)) kinetics during moderate [below the lactate threshold (LT)] and heavy (above LT) treadmill running. Twenty-three healthy physical education students undertook 6 wk of endurance training that involved continuous and interval running training 3-5 days per week for 20-30 min per session. Before and after the training program, the subjects performed an incremental treadmill test to exhaustion for determination of the LT and the VO(2 max) and a series of 6-min square-wave transitions from rest to running speeds calculated to require 80% of the LT and 50% of the difference between LT and maximal VO(2). The training program caused small (3-4%) but significant increases in LT and maximal VO(2) (P<0.05). The VO(2) kinetics for moderate exercise were not significantly affected by training. For heavy exercise, the time constant and amplitude of the fast component were not significantly affected by training, but the amplitude of the VO(2) slow component was significantly reduced from 321+/-32 to 217+/-23 ml/min (P<0.05). The reduction in the slow component was not significantly correlated to the reduction in blood lactate concentration (r = 0. 39). Although the reduction in the slow component was significantly related to the reduction in minute ventilation (r = 0.46; P<0.05), it was calculated that only 9-14% of the slow component could be attributed to the change in minute ventilation. We conclude that the VO(2) slow component during treadmill running can be attenuated with a short-term program of endurance running training.  相似文献   

7.
Determinants of endurance in well-trained cyclists   总被引:7,自引:0,他引:7  
Fourteen competitive cyclists who possessed a similar maximum O2 consumption (VO2 max; range, 4.6-5.0 l/min) were compared regarding blood lactate responses, glycogen usage, and endurance during submaximal exercise. Seven subjects reached their blood lactate threshold (LT) during exercise of a relatively low intensity (group L) (i.e., 65.8 +/- 1.7% VO2 max), whereas exercise of a relatively high intensity was required to elicit LT in the other seven men (group H) (i.e., 81.5 +/- 1.8% VO2 max; P less than 0.001). Time to fatigue during exercise at 88% of VO2 max was more than twofold longer in group H compared with group L (60.8 +/- 3.1 vs. 29.1 +/- 5.0 min; P less than 0.001). Over 92% of the variance in performance was related to the % VO2 max at LT and muscle capillary density. The vastus lateralis muscle of group L was stressed more than that of group H during submaximal cycling (i.e., 79% VO2 max), as reflected by more than a twofold greater (P less than 0.001) rate of glycogen utilization and blood lactate concentration. The quality of the vastus lateralis in groups H and L was similar regarding mitochondrial enzyme activity, whereas group H possessed a greater percentage of type I muscle fibers (66.7 +/- 5.2 vs. 46.9 +/- 3.8; P less than 0.01). The differing metabolic responses to submaximal exercise observed between the two groups appeared to be specific to the leg extension phase of cycling, since the blood lactate responses of the two groups were comparable during uphill running. These data indicate that endurance can vary greatly among individuals with an equal VO2 max.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This paper examines current concepts concerning "limiting" factors in human endurance performance by modeling marathon running times on the basis of various combinations of previously reported values of maximal O2 uptake (VO2max), lactate threshold, and running economy in elite distance runners. The current concept is that VO2max sets the upper limit for aerobic metabolism while the blood lactate threshold is related to the fraction of VO2max that can be sustained in competitive events greater than approximately 3,000 m. Running economy then appears to interact with VO2max and blood lactate threshold to determine the actual running speed at lactate threshold, which is generally a speed similar to (or slightly slower than) that sustained by individual runners in the marathon. A variety of combinations of these variables from elite runners results in estimated running times that are significantly faster than the current world record (2:06:50). The fastest time for the marathon predicted by this model is 1:57:58 in a hypothetical subject with a VO2max of 84 ml.kg-1.min-1, a lactate threshold of 85% of VO2max, and exceptional running economy. This analysis suggests that substantial improvements in marathon performance are "physiologically" possible or that current concepts regarding limiting factors in endurance running need additional refinement and empirical testing.  相似文献   

9.
We investigated which attribute or what combination of attributes would best account for distance running performance of female runners. The subjects were 30 well-trained female distance runners, aged 19 to 23 years. Anthropometric and body composition characteristics, pulmonary function characteristics, blood properties, and cardiorespiratory function characteristics were measured at rest or during submaximal and maximal exercise. Analyses of the data showed that the relationship of oxygen uptake corresponding to lactate threshold (VO2T, ml.kg-1.min-1) with each distance running performance was substantially higher as compared with the relationship of other independent variables including maximal oxygen uptake (VO2max). Furthermore, multiple regression analysis indicated that running performances in 3,000m, 5,000m, and 10,000m are best accounted for by a combination of VO2/LT (X1), fat-free weight (X2), and/or mean corpuscular volume (X3). A multiple regression equation for predicting the 5,000m (Y, s) running performance was formulated as Y = -14.75X1-3. 03X2-5.79X3 + 2282.1. We suggest that VO2max would not stand alone as a decisive factor of distance running success in female runners, and that the distance running performance could be better accounted for by a combination of several attributes relating to lactate threshold, body composition, and/or hematological status. The linear regression of the predicted running performance on the actually measured running performance can be accepted in the range of 986-1197s.  相似文献   

10.
The current investigation was designed to determine which factor or what combination of factors would best account for distance running performance in middle-aged and elderly runners (mean age 57.5 years SD +/- 9.7) with heterogeneous training habits. Among 35 independent variables which were arbitrarily selected as possible prerequisites in the distance running performance of these runners, oxygen uptake (VO2) at lactate threshold (LT) (r = 0.781-0.889), maximal oxygen uptake (VO2 max) (r = 0.751 approximately 0.886), and chronological age (r = -0.736-(-)0.886) were found to be the 3 predictor variables showing the highest correlations with the mean running velocity at 5 km (V5km), 10 km (V10km), and marathon (VM). When all independent variables were used in a multiple regression analysis, any 3 or 4 variables selected from among VO2 at LT, chronological age, systolic blood pressure (SBP), atherogenic index (AI), and Katsura index (KI) were found to give the best explanation of V5km, V10km, or VM in a combined linear model. Linear multiple regression equations constructed for predicting the running performances were: V5km = 0.046X1-0.026X2-0.0056X3+5.17, V10km = 0.028X1-0.028X2-0.190X4-1.34X5+6.45, and VM = -0.0400X2-0.324X4-1.16X5+7.36, where X1 = VO2 at LT (ml.min-1.kg-1), X2 = chronological age, X3 = SBP, X4 = AI, and X5 = KI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The purpose of the present study was to comprehensively examine oxygen consumption (VO(2)) kinetics during running and cycling through mathematical modeling of the breath-by-breath gas exchange responses to moderate and heavy exercise. After determination of the lactate threshold (LT) and maximal oxygen consumption (VO(2 max)) in both cycling and running exercise, seven subjects (age 26.6 +/- 5.1 yr) completed a series of "square-wave" rest-to-exercise transitions at running speeds and cycling power outputs that corresponded to 80% LT and 25, 50, and 75%Delta (Delta being the difference between LT and VO(2 max)). VO(2) responses were fit with either a two- (LT) exponential model. The parameters of the VO(2) kinetic response were similar between exercise modes, except for the VO(2) slow component, which was significantly (P < 0.05) greater for cycling than for running at 50 and 75%Delta (334 +/- 183 and 430 +/- 159 ml/min vs. 205 +/- 84 and 302 +/- 154 ml/min, respectively). We speculate that the differences between the modes are related to the higher intramuscular tension development in heavy cycle exercise and the higher eccentric exercise component in running. This may cause a relatively greater recruitment of the less efficient type II muscle fibers in cycling.  相似文献   

12.
Physiological and metabolic output responses to facial cooling during a graded maximal exercise and a prolonged submaximal exercise lasting 30 min at 65% max were investigated in five male subjects. Pedalling on a cycle ergometer was performed both with and without facial cooling (10°C, 4.6 m s–1). Facial cooling at the end of graded maximal exercise apparently had no effect on plasma lactate (LA), maximal oxygen consumption ( max), maximal heart rate (HR max), rectal temperature (T re), work-load, lactate threshold (LT), ventilatory threshold (VT) and onset of blood lactate accumulation (OBLA). However, the response to facial cooling after prolonged submaximal exercise is significantly different for heart rate and work-load. The results suggest that facial wind stimulation during maximal exercise does not produce a stress high enough to alter the metabolic and physiological responses.  相似文献   

13.
It has been proposed that field-based tests (FT) used to estimate functional threshold power (FTP) result in power output (PO) equivalent to PO at lactate threshold (LT). However, anecdotal evidence from regional cycling teams tested for LT in our laboratory suggested that PO at LT underestimated FTP. It was hypothesized that estimated FTP is not equivalent to PO at LT. The LT and estimated FTP were measured in 7 trained male competitive cyclists (VO2max = 65.3 ± 1.6 ml O2·kg(-1)·min(-1)). The FTP was estimated from an 8-minute FT and compared with PO at LT using 2 methods; LT(Δ1), a 1 mmol·L(-1) or greater rise in blood lactate in response to an increase in workload and LT(4.0), blood lactate of 4.0 mmol·L(-1). The estimated FTP was equivalent to PO at LT(4.0) and greater than PO at LT(Δ1). VO2max explained 93% of the variance in individual PO during the 8-minute FT. When the 8-minute FT PO was expressed relative to maximal PO from the VO2max test (individual exercise performance), VO2max explained 64% of the variance in individual exercise performance. The PO at LT was not related to 8-minute FT PO. In conclusion, FTP estimated from an 8-minute FT is equivalent to PO at LT if LT(4.0) is used but is not equivalent for all methods of LT determination including LT(Δ1).  相似文献   

14.
The purpose of this study was to describe the physiological and aerodynamic characteristics and the preparation for a successful attempt to break the 1-h cycling world record. An elite professional road cyclist (30 yr, 188 cm, 81 kg) performed an incremental laboratory test to assess maximal power output (W(max)) and power output (W(OBLA)), estimated speed (V(OBLA)), and heart rate (HR(OBLA)) at the onset of blood lactate accumulation (OBLA). He also completed an incremental velodrome (cycling track) test (VT1), during which V(OBLAVT1) and HR(OBLAVT1) were measured and W(OBLAVT1) was estimated. W(max) was 572 W, W(OBLA) 505 W, V(OBLA) 52.88 km/h, and HR(OBLA) 183 beats/min. V(OBLAVT1), HR(OBLAVT1), and W(OBLAVT1) were 52.7 km/h, 180 beats/min, and 500.6 W, respectively. Drag coefficient and shape coefficient, measured in a wind tunnel, were 0. 244 and 0.65 m(2), respectively. The cyclist set a world record of 53,040 m, with an estimated average power output of 509.5 W. Based on direct laboratory data of the power vs. oxygen uptake relationship for this cyclist, this is slightly higher than the 497. 25 W corresponding to his oxygen uptake at OBLA (5.65 l/min). In conclusion, 1) the 1-h cycling world record is the result of the interaction between physiological and aerodynamic characteristics; and 2) performance in this event can be predicted using mathematical models that integrate the principal performance-determining variables.  相似文献   

15.
A simple method for sampling skin secretion in 1-min periods was developed for investigating the effects of progressive increases in exercise intensity on Na+, K+ and Cl- secretions from the skin of the forearm. Ten healthy male subjects performed exercise consisting of eight stepwise increases in intensity from 50 to 225 W, with a 25-W increase at each step. Exercise at each step was for 3 min followed by a 1-min recovery period. Samples of blood and skin secretion were taken during the recovery period. Significant positive correlations were found between the mean concentrations of Na+ and Cl- and between those of K+ and Cl- in the skin secretion. The concentrations of electrolytes in the skin secretion also showed significant correlations with the blood lactate concentrations. The inflection points for secretions of Na+, K+ and Cl- were 4.04, 3.61 and 3.83 mmol.l-1 of blood lactate; 64.42, 61.96 and 62.14% of maximal oxygen consumption (VO2max); and exercise intensities of 123.01, 117.65 and 125.07 W, respectively. No significant differences were observed between the value of 67.27% of VO2max or 134.00W at the onset of blood lactate accumulation (OBLA) and the inflection points. From these results we concluded that changes in electrolyte concentrations in skin secretion during incremental exercise according to this protocol were closely related with the change in the blood lactate concentration, and that the inflection points for electrolytes may have been near the exercise intensity at OBLA.  相似文献   

16.
We attempted to determine the change in total excess volume of CO2 output (CO2 excess) due to bicarbonate buffering of lactic acid produced in exercise due to endurance training for approximately 2 months and to assess the relationship between the changes of CO2 excess and distance-running performance. Six male endurance runners, aged 19-22 years, were subjects. Maximal oxygen uptake (VO2max), oxygen uptake (VO2) at anaerobic threshold (AT), CO2 excess and blood lactate concentration were measured during incremental exercise on a cycle ergometer and 12-min exhausting running performance (12-min ERP) was also measured on the track before and after endurance training. The absolute magnitudes in the improvement due to training for CO2 excess per unit of body mass per unit of blood lactate accumulation (delta la-) in exercise (CO2 excess.mass-1.delta la-), 12-min ERP, VO2 at AT (AT-VO2) and VO2max on average were 0.8 ml.kg-1.l-1.mmol-1, 97.8 m, 4.4 ml.kg-1. min-1 and 7.3 ml.kg-1.min-1, respectively. The percentage change in CO2 excess.mass-1.delta la- (15.7%) was almost same as those of VO2max (13.7%) and AT-VO2 (13.2%). It was found to be a high correlation between the absolute amount of change in CO2 excess.mass-1.delta la-, and the absolute amount of change in AT-VO2 (r = 0.94, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The aim of the study was to investigate the correlation between myosin heavy chain (MHC) composition, lactate threshold (LT), maximal oxygen uptake VO2max, and average muscle fiber conduction velocity (MFCV) measured from surface electromyographic (EMG) signals during cycling exercise. Ten healthy male subjects participated in the study. MHC isoforms were identified from a sample of the vastus lateralis muscle and characterized as type I, IIA, and IIX. At least three days after a measure of LT and VO2max, the subjects performed a 2-min cycling exercise at 90 revolutions per minute and power output corresponding to LT, during which surface EMG signals were recorded from the vastus lateralis muscle with an adhesive electrode array. MFCV and instantaneous mean power spectral frequency of the surface EMG were estimated at the maximal instantaneous knee angular speed. Output power corresponding to LT and VO2max were correlated with percentage of MHC I (R2=0.77; and 0.42, respectively; P<0.05). MFCV was positively correlated with percentage of MHC I, power corresponding to LT and to VO2max (R2=0.84; 0.74; 0.53, respectively; P<0.05). Instantaneous mean power spectral frequency was not correlated with any of these variables or with MFCV, thus questioning the use of surface EMG spectral analysis for indirect estimation of MFCV in dynamic contractions.  相似文献   

18.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

19.
Cardiorespiratory and blood lactate (La) responses to prolonged submaximal running at an intensity relative to lactate threshold (LT) were examined in 15 recreational runners, aged 19 to 32. In test 1 where treadmill speed was progressively incremented by 10-20m/min until exhaustion, oxygen uptake at the LT (VO2 @ LT: 2.34 +/- 0.331/min or 41.6 +/- 5.7 ml/kg/min) and VO2max (3.58 +/- 0.341/min or 63.6 +/- 5.5 ml/kg/min) were measured. In test 2, the subject was required to run on the treadmill for 1 hour at a fixed velocity (Vt) which corresponded to his Vt @ LT. As expected, mean VO2 ranged during the 1-h submaximal running from 2.31 +/- 0.411/min or 63.0 +/- 7.8% VO2max at min 10-20 to 2.52 +/- 0.351/min or 69.2 +/- 6.2% VO2max at min 50-60, both of which were close to VO2 @ LT (65.2 +/- 4.4% VO2max). The slight decrease in blood La was found from min 20 to min 60, and this was accompanied by a parallel decline in respiratory exchange ratio. Shifts in the energy substrate toward a reliance on fat oxidation may occur during the course of 1-h running at Vt @t LT. The small oxygen debt observed after the 1-h running may confirm the assumption that prolonged running at Vt at LT would be performed in an almost fully aerobic steady state. We conclude that prolonged running at Vt @ LT may possibly maximize health-related benefits in the healthy adult.  相似文献   

20.
Monodelphis domestica (Marsupialia: Didelphidae) was used as a model animal to investigate and compare muscle adaptation to exercise training and cold exposure. The experimental treatment consisted of four groups of animals: either warm or cold acclimation temperature and with or without endurance exercise training. Maximal aerobic capacity during a running VO2max test in the warm-exercised or cold-exposed (with or without exercise) groups was about 130 mL O(2)/kg/min, significantly higher than the warm-acclimated controls at 113.5 mL O(2)/kg/min. Similarly, during an acute cold challenge (VO2summit), maximal aerobic capacity was higher in these three experimental groups at approximately 95 mL O(2)/kg/min compared with 80.4 mL O(2)/kg/min in warm-acclimated controls. Respiratory exchange ratio was significantly lower (0.89-0.68), whereas relative heart mass (0.52%-0.73%) and whole-body muscle mitochondrial volume density (2.59 to 3.04 cm(3)) were significantly higher following cold exposure. Chronic cold exposure was a stronger stimulus than endurance exercise training for tissue-specific adaptations. Although chronic cold exposure and endurance exercise are distinct challenges, physiological adaptations to each overlap such that the capacities for aerobic performance in response to both cold exposure and running are increased by either or both treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号