首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Octopine and nopaline Ti-plasmids confer upon Agrobacterium tumefaciens C58C1 the ability to respond chemotactically to the vir-inducing phenolic wound exudate, acetosyringone. A. tumefaciens C58C1 containing Ti-plasmids with Tn5 insertions in virB, C, D or E exhibited marked chemotaxis towards acetosyringone. However, Ti-plasmids with mutations in virA or virG were unable to confer the responsive phenotype. Of the cosmid clones pVK219 (virAB) pVK221 (virBGC) pVK225 (virGCDE) and pVK257 (virABGC) mobilized to cured A. tumefaciens C58C1, only pVK257 bestowed acetosyringone chemotaxis. virA and virG are thus required for chemotaxis of A. tumefaciens towards acetosyringone. This suggests a multifunctional role for virA and virG: at low concentrations of acetosyringone they mediate chemotaxis and at higher concentrations they effect vir-induction.  相似文献   

2.
The T pilus, primarily composed of cyclic T-pilin subunits, is essential for the transmission of the Ti-plasmid T-DNA from Agrobacterium tumefaciens to plant cells. Although the virB2 gene of the 11-gene virB operon was previously demonstrated to encode the full-length propilin, and other genes of this operon have been implicated as members of a conserved transmembrane transport apparatus, the role of each virB gene in T-pilin synthesis and transport and T-pilus biogenesis remained undefined. In the present study, each virB gene was examined and was found to be unessential for T-pilin biosynthesis, except virB2, but was determined to be essential for the export of the T-pilin subunits and for T-pilus formation. We also find that the genes of the virD operon are neither involved in T-pilin export nor T-pilus formation. Critical analysis of three different virD4 mutants also showed that they are not involved in T-pilus biogenesis irrespective of the A. tumefaciens strains used. With respect to the environmental effects on T-pilus biogenesis, we find that T pili are produced both on agar and in liquid culture and are produced at one end of the A. tumefaciens rod-shaped cell in a polar manner. We also report a novel phenomenon whereby flagellum production is shut down under conditions which turn on T-pilus formation. These conditions are the usual induction with acetosyringone at pH 5.5 of Ti-plasmid vir genes. A search of the vir genes involved in controlling this biphasic reaction in induced A. tumefaciens cells revealed that virA on the Ti plasmid is involved and that neither virB nor virD genes are needed for this reaction. The biphasic reaction therefore appears to be mediated through a two-component signal transducing system likely involving an unidentified vir gene in A. tumefaciens.  相似文献   

3.
Hydroxylamine-induced mutations in the virA gene of Agrobacterium tumefaciens that do not require the plant phenolic-inducing compound acetosyringone for vir regulon induction were isolated. The isolation was based on the activation of both virB::lacZ and virE::cat fusions by mutant virA loci in the absence of acetosyringone. Three of these virA(Ais) (acetosyringone-independent signaling) mutants were characterized. All three mutants expressed a virB::lacZ fusion at high levels in the absence of acetosyringone. One virA (Ais) mutant, virA112, exhibited vir gene expression in the absence of inducing monosaccharides and acidic growth conditions, both of which are normally required for vir gene induction. The phenotype of the virA112 mutant resulted from a glycine to glutamic acid change near His-474, the site of VirA autophosphorylation.  相似文献   

4.
Although the majority of genes required for the transfer of T-DNA from Agrobacterium tumefaciens to plant nuclei are located on the Ti plasmid, some chromosomal genes, including the recently described acvB gene, are also required. We show that AcvB shows 50% identity with the product of an open reading frame, designated virJ, that is found between the virA and virB genes in the octopine-type Ti plasmid pTiA6. This reading frame is not found in the nopaline-type Ti plasmid pTiC58. acvB is required for tumorigenesis by a strain carrying a nopaline-type Ti plasmid, and virJ complements this nontumorigenic phenotype, indicating that the products of these genes have similar functions. A virJ-phoA fusion expressed enzymatically active alkaline phosphatase, indicating that VirJ is at least partially exported. virJ is induced in a VirA/VirG-dependent fashion by the vir gene inducer acetosyringone. Primer extension analysis and subcloning of the virJ-phoA fusion indicate that the acetosyringone-inducible promoter lies directly upstream of the virJ structural gene. Although the roles of the two homologous genes in tumorigenesis remain to be elucidated, strains lacking acvB and virJ (i) are proficient for induction of the vir regulon, (ii) are able to transfer their Ti plasmids by conjugation, and (iii) are resistant to plant wound extracts. Finally, mutations in these genes cannot be complemented extracellularly.  相似文献   

5.
6.
7.
Upon incubation of Agrobacterium tumefaciens A348 with acetosyringone, the vir genes encoded by the Ti (tumor-inducing) plasmid are induced. The addition of certain opines, including octopine, nopaline, leucinopine, and succinamopine, enhanced this induction 2- to 10-fold. The compounds mannopine, acetopine, arginine, pyruvate, and leucine did not stimulate the induction of the vir genes to such an extent. The enhancement of vir gene induction by opines depended on acetosyringone and the genes virA and virG. Opines stimulated the activity of the vir genes, the double-stranded cleavage of the T (transferred)-DNA at the border repeat sequences, and the production of T-strands by the bacterium. The transformation efficiency of cotton shoot tips was markedly increased by the addition of acetosyringone and nopaline at the time of infection.  相似文献   

8.
The nopaline-type Ti plasmid T37 of Agrobacterium tumefaciens carries two distinct genes that encode enzymes involved in cytokinin biosynthesis. In this report, we show that the level of expression of one of these genes was increased dramatically by culture conditions that increased the expression of Ti plasmid virulence genes, including coculture with plant cells or treatment with acetosyringone, a plant phenolic compound. When this nopaline-type Ti plasmid gene was introduced into Agrobacterium strains containing an octopine-type Ti plasmid, similar induction of expression by culture conditions was observed, and analysis of virulence region mutants demonstrated that this induction was under the control of the virA and virG regulatory loci. We further show that induction was strongly pH dependent in octopine strains but, under the conditions examined, pH independent in nopaline strains.  相似文献   

9.
Certain virulence region operons of the Agrobacterium tumefaciens Ti plasmid promoted conjugative Ti plasmid transfer. Mutations in the vir region of pTiC58 inhibited conjugative plasmid transfer between A. tumefaciens strains. Mutations in virA, virG, 5' virB, and virE had the greatest effect on plasmid transfer, and mutations in virC had no effect. Transfer inhibition in vir mutants occurred in the presence or absence of acetosyringone.  相似文献   

10.
Agrobacterium tumefaciens C58C1[pTiB6S3] harbouring the octopine Ti-plasmid pTiB6S3, showed positive chemotaxis towards the phenolic plant wound exudate acetosyringone (AS). Maximal attraction was observed at 10−7 M. In contrast, A. tumefaciens C58C1 lacking a Ti-plasmid, exhibited no chemotactic response to AS. However, chemotaxis did occur towards the plant phenolic vanillyl alcohol, but at higher concentrations (10−2 M) and in both Ti-plasmid-containing and cured A. tumefaciens.These results indicate that at least one Ti-plasmid function is involved in the specific chemotactic response to AS, although chemotaxis per se is not Ti-plasmid-encoded. This correlates well with the specific induction of vir-operons mediated by this plant wound product [1].  相似文献   

11.
12.
Mutagenesis of the vir region on the Ti plasmid of Agrobacterium tumefaciens revealed a new locus, virJ , that is induced by the plant-wound signal molecule, acetosyringone (AS). virJ lies between virA and virB , and is transcribed in the same direction. The amino acid sequence of virJ is similar to a region of a previously characterized chromosomal gene, acvB , required for virulence. virJ can complement the avirulent phenotype of an acvB mutant, indicating that virJ and acvB encode the same factor required for tumorigenesis. Southern analysis revealed that virJ is present on the Ti plasmid of an octopine but not a nopaline strain whereas acvB is present on the chromosomes of both octopine and nopaline strains. While virJ is regulated by AS under the control of the virA/virG two-component regulatory system, acvB is not induced by AS. VirJ possesses a putative signal peptide and was found predominantly in the periplasmic fraction. The strain lacking both acvB and virJ had an impaired ability to transfer T-DNA into plant cells, suggesting that the factor encoded by virJ or acvB is required for T-DNA transfer from A. tumefaciens to plant cells. acvB is the first chromosomal gene implicated in T-DNA transfer, but whether it functions specifically for this process is not clear. We hypothesize that virJ evolved from acvB , presumably for a more specialized role in tumorigenesis.  相似文献   

13.
14.
Previous studies have shown that Agrobacterium tumefaciens causes tumors on plants only at temperatures below 32 degrees C, and virulence gene expression is specifically inhibited at temperatures above 32 degrees C. We show here that this effect persists even when the virA and virG loci are expressed under the control of a lac promoter whose activity is temperature independent. This finding suggests that one or more steps in the signal transduction process mediated by the VirA and VirG proteins are temperature sensitive. Both the autophosphorylation of VirA and the subsequent transfer of phosphate to VirG are shown to be sensitive to high temperatures (> 32 degrees C), and this correlates with the reduced vir gene expression observed at these temperatures. At temperatures of 32 degrees C and higher, the VirA molecule undergoes a reversible inactivation while the VirG molecule is not affected. vir gene induction is temperature sensitive in an acetosyringone-independent virA mutant background but not in a virG constitutive mutant which is virA and acetosyringone independent. These observations all support the notion that the VirA protein is responsible for the thermosensitivity of vir gene expression. However, an Agrobacterium strain containing a constitutive virG locus still cannot cause tumors on Kalanchoe plants at 32 degrees C. This strain induces normal-size tumors at temperatures up to 30 degrees C, whereas the wild-type Agrobacterium strain produces almost no tumors at 30 degrees C. These results suggest that at temperatures above 32 degrees C, the plant becomes more resistant to infection by A. tumefaciens and/or functions of some other vir gene products are lost in spite of their normal levels of expression.  相似文献   

15.
Agrobacterium tumefaciens is a gram-negative bacterium with the unique capacity to induce neoplasmic transformations in dicotyledonous plants. Recently, both the mechanism and the biological significance of this transformation have been elucidated. Agrobacterium tumefaciens strains contain a large extrachromosomal DNA plasmid (the Ti-plasmid). This Ti-plasmid is responsible for the oncogenic properties of Agrobacterium strains. A particular segment of the Ti-plasmid, containing information determining the tumorous growth pattern and the synthesis of so-called 'opines', e.g. octopine (N-alpha-(D-1-carboxyethyl)-L-arginine) and nopaline (N-alpha-(1,3-dicarboxypropyl)-L-argine), is transferred and stably maintained and expressed in the transformed plant cells. This phenomenon can be understood as a 'genetic colonization' of the plant cells by bacterial plasmid DNA so that the transformed plant cells will produce and secrete into the medium amino acid derivatives (the opines) that Ti-plasmid carrying agrobacteria can selectively use as carbon and nitrogen sources.  相似文献   

16.
The transmembrane sensor protein VirA activates VirG in response to high levels of acetosyringone (AS). In order to respond to low levels of AS, VirA requires the periplasmic sugar-binding protein ChvE and monosaccharides released from plant wound sites. To better understand how VirA senses these inducers, the C58 virA gene was randomly mutagenized, and 14 mutants defective in vir gene induction and containing mutations which mapped to the input domain of VirA were isolated. Six mutants had single missense mutatiions in three widely separated areas of the periplasmic domain. Eight mutants had mutations in or near an amphipathic helix, TM1, or TM2. Four of the mutations in the periplasmic domain, when introduced into the corresponding A6 virA sequence, caused a specific defect in the vir gene response to glucose. This suggests that most of the periplasmic domain is required for the interaction with, or response to, ChvE. Three of the mutations from outside the periplasmic domain, one from each transmembrane domain and one from the amphiphathic helix, were made in A6 virA. These mutants were defective in the vir gene response to AS. These mutations did not affect the stability or topology of VirA or prevent dimerization; therefore, they may interfere with detection of AS or transmission of the signals to the kinase domain. Characterization of C58 chvE mutants revealed that, unlike A6 VirA, C58 VirA requires ChvE for activation of the vir genes.  相似文献   

17.
The VirA/VirG two-component regulatory system of Agrobacterium tumefaciens regulates expression of the virulence (vir) genes that control the infection process leading to crown gall tumor disease on susceptible plants. VirA, a membrane-bound homodimer, initiates vir gene induction by communicating the presence of molecular signals found at the site of a plant wound through phosphorylation of VirG. Inducing signals include phenols, monosaccharides, and acidic pH. While sugars are not essential for gene induction, their presence greatly increases vir gene expression when levels of the essential phenolic signal are low. Reception of the sugar signal depends on a direct interaction between ChvE, a sugar-binding protein, and VirA. Here we show that the sugar signal received in the periplasmic region of one subunit within a VirA heterodimer can enhance the kinase function of the second subunit. However, sugar enhancement of vir gene expression was vector dependent. virA alleles expressed from pSa-derived vectors inhibited signal transduction by endogenous VirA. Inhibition was conditional, depending on the induction medium and the virA allele tested. Moreover, constitutive expression of virG overcame the inhibitory effect of some but not all virA alleles, suggesting that there may be more than one inhibitory mechanism.  相似文献   

18.
19.
A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.  相似文献   

20.
Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes.   总被引:17,自引:11,他引:6       下载免费PDF全文
The virulence genes of nopaline (pTiC58) and octopine (pTiA6NC) Ti plasmids are similarly affected by the Agrobacterium tumefaciens ros mutation. Of six vir region complementation groups (virA, virB, virG, virC, virD, and virE) examined by using fusions to reporter genes, the promoters of only two (virC and virD) responded to the ros mutation. For each promoter that was affected by ros, the level of expression of its associated genes was substantially elevated in the mutant. This increase was not influenced by Ti plasmid-encoded factors, and the mutation did not interfere with the induction of pTiC58 vir genes by phenolic compounds via the VirA/VirG regulatory control mechanism. The effects of the ros mutation and acetosyringone were cumulative for all vir promoters examined. The pleiotropic characteristics of the ros mutant include the complete absence of the major acidic capsular polysaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号